Skip to main content

Physical properties of honeybee silk: a review

Abstract

Honeybee silk is released from secretory cells and polymerises as birefringent tactoids in the lumen while silk is spun by a spinneret at the tip of the labium–hypopharynx and contains ά-helical proteins arranged in a four-strand coiled-coil structure. Wet fibres are only half as stiff as dried ones, but are equal in strength. The fibroin is hygroscopic and lithium thiocyanate and urea eliminate the yield point tested on both dry and wet fibres. The slopes of the solvent-related curves are reduced compared to those tested in water. Silk sheets are independent of temperature when deformed in tension. This fibre is rather crystalline and its hydration sensitivity, expressed as the ratio of the elastic modulus of wet to that of dry fibre, is 0.53. The ά-helical fibroins are predicted to have an antiparallel tetrameric configuration that is shown as a possible structural model. The molecular structure of ά-helical proteins maximizes their robustness with minimal use of building materials. In conclusion, it appears that the composition, molecular topology and amino acid content and sequence are a highly conserved feature in the evolution of silk in Apis species.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

References

  1. Ackbarow, T., Chen, X., Keten, S., Buehler, M.J. (2007) Hierarchies, multiple energy barriers and robustness govern the fracture mechanics of ά-helical and β-sheet protein domains. Proc. Nat. Acad. Sci. 104, 16410–16415

    PubMed  Article  CAS  Google Scholar 

  2. Ackbarow, T., Sen, D., Thaulow, C., Buehler, M.J. (2009) alpha-Helical protein networks are self protective and flaw-tolerant. PLoS One 4(6), e6015. doi:10.1371/journal.pone.0006015

    PubMed  Article  Google Scholar 

  3. Andersen, S.O., Weis-Fogh, T. (1964) Resilin. A rubberlike protein in arthropod cuticle. Adv. Insect Physiol. 2, 1–65

    Article  CAS  Google Scholar 

  4. Arnhart, L. (1906) Die Zwischenräume zwischen den Wachsdrussenzellender Honigbiene. Zool. Anz. 30, 719–721

    Google Scholar 

  5. Atkins, E.D.T. (1967) A four-strand coiled-coil model for some insect fibrous proteins. J Mol Biol 24, 139–141

    Article  CAS  Google Scholar 

  6. Buehler, M.J., Ackbarow, T. (2007) Fracture mechanics of protein materials. Mater Today 10, 48–58

    Article  Google Scholar 

  7. Buehler, M.J., Keten, S. (2008) Elasticity, strength and resilience: A comparative study on mechanical signatures of α-helix, β-sheet and tropocollagen domains. Nano Res 1, 63–71

    Article  CAS  Google Scholar 

  8. Chauvin, R. (1962) Sur le noircissement des vieilles cires. Ann. Abeille 5, 59–63

    Article  Google Scholar 

  9. Flower, N.E., Kenchington, W. (1967) Studies on insect fibrous proteins: the larval silk of Apis, Bombus and Vespa (Hymenoptera: Aculeata). J. R. Micro. Soc. 86, 297–310

    Article  CAS  Google Scholar 

  10. Hepburn, H.R. (1986) Honeybees and wax. Springer, Berlin

    Book  Google Scholar 

  11. Hepburn, H.R., Kurstjens, S.P. (1984) On the strength of propolis (bee glue). Naturwissenschaften 71, 591–592

    Article  Google Scholar 

  12. Hepburn, H.R., Kurstjens, S.P. (1988) The combs of honeybees as composite materials. Apidologie 19, 25–36

    Article  Google Scholar 

  13. Hepburn, H.R., Chandler, H.D., Davidoff, M.R. (1979) Extensometric properties of insect fibroins: the green lacewing cross-β, honeybee ά-helical and greater waxmoth parallel-β conformations. Insect Biochem. 9, 69–77

    Article  CAS  Google Scholar 

  14. Hepburn, H.R., Armstrong, E., Kurstjens, S.P. (1983) The ductility of native beeswax is optimally related to honeybee colony temperature. S. Afr. J. Sci. 79, 416–417

    Google Scholar 

  15. Hepburn, H.R., Muerrle, T., Radloff, S.E. (2007) The cell bases of honeybee combs. Apidologie 38, 268–271. U KRSTJENS S.P., 1983

    Google Scholar 

  16. Huber F. (1814) Nouvelles Observations sur les Abeilles. [English translation 1926] Dadant, Hamilton

  17. Jay, S.C. (1964) The cocoon of the honeybee, Apis mellifera L. Canad. Ent. 96, 784–792

    Article  Google Scholar 

  18. Kurstjens, S.P., Hepburn, H.R., Schoening, F.R.L., Davidson, B.C. (1985) The conversion of wax scales into comb wax by African honeybees. J. Comp. Physiol. B156, 95–102

    Google Scholar 

  19. Kurstjens, S.P., McClain, E., Hepburn, H.R. (1990) The proteins of beeswax. Naturwissenschaften 77, 34–35

    Article  CAS  Google Scholar 

  20. Lucas, F., Rudall, K.M. (1968) Extracellular fibrous proteins: the silks. In: Florkin, M., Stotz, E.H. (eds.) Comprehensive biochemistry, vol. 26, pp. 475–558. Elsevier, Amsterdam

    Google Scholar 

  21. Lucas, F., Shaw, J.T.B., Smith, S.G. (1960) Comparative studies of fibroins: I. The amino acid composition of various fibroins and its significance in relation to their crystal structure and taxonomy. J Mol Biol 2, 339–349

    PubMed  Article  CAS  Google Scholar 

  22. Pirk, C.W.W., Hepburn, H.R., Radloff, S.E., Tautz, J. (2004) Honeybee combs: construction through a liquid equilibrium process? Naturwissenschaften 91, 350–353

    PubMed  Article  CAS  Google Scholar 

  23. Rudall, K.M. (1962) Silk and other cocoon proteins. In: Florkin, M., Mason, H.S. (eds.) Comparative biochemistry, vol. IV, pp. 397–433. Academic, New York

    Google Scholar 

  24. Rudall, K.M. (1965) Aspects of Insect Biochemistry. Academic, London

    Google Scholar 

  25. Shao, Z.Z., Vollrath, F. (2002) Materials: surprising strength of silkworm silk. Nature 418, 741

    PubMed  Article  CAS  Google Scholar 

  26. Shi, J., Lua, S., Du, N., Liu, X., Song, J. (2008) Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana. Biomaterials 29, 2820–2828

    PubMed  Article  CAS  Google Scholar 

  27. Silva-Zacarin, E.C.M., De Moraes, R.L.M.S., Taboga, S.R. (2003) Silk formation mechanisms in the larval salivary glands of Apis mellifera (Hymenoptera: Apidae). J. Biosci. Bangalore. 28, 753–764

    Article  Google Scholar 

  28. Sutherland, T.D., Campbell, P.M., Weisman, S., Trueman, H.E., Sriskantha, A., Wanjura, W.J., Haritos, V.S. (2006) A highly divergent gene cluster in honeybees encodes a novel silk family. Genome Res 16, 1414–1421. Coil

    PubMed  Article  CAS  Google Scholar 

  29. Sutherland, T.D., Weisman, S., Trueman, H.E., Sriskantha, A., Trueman, J.W.H., Haritos, V.S. (2007) Conservation of essential design features in coiled-coil silks. Mol Biol Evol 24, 2424–2432

    PubMed  Article  CAS  Google Scholar 

  30. Sutherland, T.D., Young, J., Weisman, S., Hayashi, C.Y., Merrit, D. (2010a) Insect silk: one name, many materials. Annu. Rev. Entomol. 55, 171–188

    PubMed  Article  CAS  Google Scholar 

  31. Sutherland, T.D., Haritos, V.S., Trueman, H.E., Sriskantha, A., Weisman, S., Campbell, P.M. (2010) United States Patent Application Publication. US2010/0100975 A1. April 22 2010

  32. Sutherland, T.D., Church, J.S., Hu, X., Huson, M.G., Kaplan, D.L., Weisman, S. (2011a) Single honeybee silk protein mimics properties of multi-protein silk. PLoS One 6(2), 16489. doi:10.1371/journal.pone.0016489

    Article  Google Scholar 

  33. Sutherland, T.D., Weisman, S., Walker, A.A., Mudie, S.T. (2011b) The coiled-coil silk of bees, ants, and hornets. Biopolymers 97, 446–454

    PubMed  Article  Google Scholar 

  34. Sutherland, TD, Weisman, S, Walker, AA, and Mudie, ST (2012). Invited review: The coiled coil silk of bees, ants, and hornets. Biopolymers 97, 446–454

    Google Scholar 

  35. Verlich, A.V. (1930) Entwicklungsmechanische Studien an Bienenlarven. Z. Wiss. Zool. 136, 210–222

    Google Scholar 

  36. Vollrath, F., Knight, D.P. (2001) Liquid crystalline spinning of spider silk. Nature 410, 541–548

    PubMed  Article  CAS  Google Scholar 

  37. Wainwright, S.A., Biggs, W.D., Currey, J.D., Gosline, J.M. (1976) Mechanical design in organisms. Edward Arnold, London

    Google Scholar 

  38. Warwicker, J.O. (1960) Comparative studies of fibroins: II. The crystal structures of various fibroins. J Mol Biol 2, 350–362

    PubMed  Article  CAS  Google Scholar 

  39. Woolfson, D.N. (2005) The design of coiled-coil structures and assemblies. Adv. Protein Chem. 70, 79–112

    PubMed  Article  CAS  Google Scholar 

  40. Zhang, K., Si, F.W., Duan, H.L., Karihaloo, B.L., Wang, J. (2010a) Hierarchical, multilayered cell walls reinforced by recycled silk cocoons enhance the structural integrity of honeybee combs. Proc. Nat. Acad. Sci. 107, 9502–9506

    PubMed  Article  CAS  Google Scholar 

  41. Zhang, K., Si, F.W., Duan, H.L., Wang, J. (2010b) Microstructures and mechanical properties of silks of silkworm and honeybee. Acta Biomater 6, 2165–2171

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Tara Sutherland for kind permission to use some of her previously published figures and to TS, Colleen Hepburn and Catherine Sole for their comments on an earlier version of this manuscript. We acknowledge permission from John Wiley and Sons to use published figures from Sutherland et al. (2011b).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christian W. W. Pirk.

Additional information

Propriétés physiques de la soie produite par les abeilles: synthèse des connaissances

Abeille / Apidae / soie / fibroïne / hélice alpha

Physikalische Eigenschaften der Seide von Honigbienen: Ein Review.

Apis / Honigbiene / alpha-Helix / Fibroin

Manuscript editor: Peter Rosenkranz

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hepburn, H.R., Duangphakdee, O. & Pirk, C.W.W. Physical properties of honeybee silk: a review. Apidologie 44, 600–610 (2013). https://doi.org/10.1007/s13592-013-0209-6

Download citation

Keywords

  • honeybee
  • silk
  • ά-helix
  • fibroin