, Volume 44, Issue 5, pp 600–610 | Cite as

Physical properties of honeybee silk: a review

  • H. Randall Hepburn
  • Orawan Duangphakdee
  • Christian W. W. PirkEmail author
Review article


Honeybee silk is released from secretory cells and polymerises as birefringent tactoids in the lumen while silk is spun by a spinneret at the tip of the labium–hypopharynx and contains ά-helical proteins arranged in a four-strand coiled-coil structure. Wet fibres are only half as stiff as dried ones, but are equal in strength. The fibroin is hygroscopic and lithium thiocyanate and urea eliminate the yield point tested on both dry and wet fibres. The slopes of the solvent-related curves are reduced compared to those tested in water. Silk sheets are independent of temperature when deformed in tension. This fibre is rather crystalline and its hydration sensitivity, expressed as the ratio of the elastic modulus of wet to that of dry fibre, is 0.53. The ά-helical fibroins are predicted to have an antiparallel tetrameric configuration that is shown as a possible structural model. The molecular structure of ά-helical proteins maximizes their robustness with minimal use of building materials. In conclusion, it appears that the composition, molecular topology and amino acid content and sequence are a highly conserved feature in the evolution of silk in Apis species.


honeybee silk ά-helix fibroin 



We thank Tara Sutherland for kind permission to use some of her previously published figures and to TS, Colleen Hepburn and Catherine Sole for their comments on an earlier version of this manuscript. We acknowledge permission from John Wiley and Sons to use published figures from Sutherland et al. (2011b).


  1. Ackbarow, T., Chen, X., Keten, S., Buehler, M.J. (2007) Hierarchies, multiple energy barriers and robustness govern the fracture mechanics of ά-helical and β-sheet protein domains. Proc. Nat. Acad. Sci. 104, 16410–16415PubMedCrossRefGoogle Scholar
  2. Ackbarow, T., Sen, D., Thaulow, C., Buehler, M.J. (2009) alpha-Helical protein networks are self protective and flaw-tolerant. PLoS One 4(6), e6015. doi: 10.1371/journal.pone.0006015 PubMedCrossRefGoogle Scholar
  3. Andersen, S.O., Weis-Fogh, T. (1964) Resilin. A rubberlike protein in arthropod cuticle. Adv. Insect Physiol. 2, 1–65CrossRefGoogle Scholar
  4. Arnhart, L. (1906) Die Zwischenräume zwischen den Wachsdrussenzellender Honigbiene. Zool. Anz. 30, 719–721Google Scholar
  5. Atkins, E.D.T. (1967) A four-strand coiled-coil model for some insect fibrous proteins. J Mol Biol 24, 139–141CrossRefGoogle Scholar
  6. Buehler, M.J., Ackbarow, T. (2007) Fracture mechanics of protein materials. Mater Today 10, 48–58CrossRefGoogle Scholar
  7. Buehler, M.J., Keten, S. (2008) Elasticity, strength and resilience: A comparative study on mechanical signatures of α-helix, β-sheet and tropocollagen domains. Nano Res 1, 63–71CrossRefGoogle Scholar
  8. Chauvin, R. (1962) Sur le noircissement des vieilles cires. Ann. Abeille 5, 59–63CrossRefGoogle Scholar
  9. Flower, N.E., Kenchington, W. (1967) Studies on insect fibrous proteins: the larval silk of Apis, Bombus and Vespa (Hymenoptera: Aculeata). J. R. Micro. Soc. 86, 297–310CrossRefGoogle Scholar
  10. Hepburn, H.R. (1986) Honeybees and wax. Springer, BerlinCrossRefGoogle Scholar
  11. Hepburn, H.R., Kurstjens, S.P. (1984) On the strength of propolis (bee glue). Naturwissenschaften 71, 591–592CrossRefGoogle Scholar
  12. Hepburn, H.R., Kurstjens, S.P. (1988) The combs of honeybees as composite materials. Apidologie 19, 25–36CrossRefGoogle Scholar
  13. Hepburn, H.R., Chandler, H.D., Davidoff, M.R. (1979) Extensometric properties of insect fibroins: the green lacewing cross-β, honeybee ά-helical and greater waxmoth parallel-β conformations. Insect Biochem. 9, 69–77CrossRefGoogle Scholar
  14. Hepburn, H.R., Armstrong, E., Kurstjens, S.P. (1983) The ductility of native beeswax is optimally related to honeybee colony temperature. S. Afr. J. Sci. 79, 416–417Google Scholar
  15. Hepburn, H.R., Muerrle, T., Radloff, S.E. (2007) The cell bases of honeybee combs. Apidologie 38, 268–271. U KRSTJENS S.P., 1983Google Scholar
  16. Huber F. (1814) Nouvelles Observations sur les Abeilles. [English translation 1926] Dadant, HamiltonGoogle Scholar
  17. Jay, S.C. (1964) The cocoon of the honeybee, Apis mellifera L. Canad. Ent. 96, 784–792CrossRefGoogle Scholar
  18. Kurstjens, S.P., Hepburn, H.R., Schoening, F.R.L., Davidson, B.C. (1985) The conversion of wax scales into comb wax by African honeybees. J. Comp. Physiol. B156, 95–102Google Scholar
  19. Kurstjens, S.P., McClain, E., Hepburn, H.R. (1990) The proteins of beeswax. Naturwissenschaften 77, 34–35CrossRefGoogle Scholar
  20. Lucas, F., Rudall, K.M. (1968) Extracellular fibrous proteins: the silks. In: Florkin, M., Stotz, E.H. (eds.) Comprehensive biochemistry, vol. 26, pp. 475–558. Elsevier, AmsterdamGoogle Scholar
  21. Lucas, F., Shaw, J.T.B., Smith, S.G. (1960) Comparative studies of fibroins: I. The amino acid composition of various fibroins and its significance in relation to their crystal structure and taxonomy. J Mol Biol 2, 339–349PubMedCrossRefGoogle Scholar
  22. Pirk, C.W.W., Hepburn, H.R., Radloff, S.E., Tautz, J. (2004) Honeybee combs: construction through a liquid equilibrium process? Naturwissenschaften 91, 350–353PubMedCrossRefGoogle Scholar
  23. Rudall, K.M. (1962) Silk and other cocoon proteins. In: Florkin, M., Mason, H.S. (eds.) Comparative biochemistry, vol. IV, pp. 397–433. Academic, New YorkGoogle Scholar
  24. Rudall, K.M. (1965) Aspects of Insect Biochemistry. Academic, LondonGoogle Scholar
  25. Shao, Z.Z., Vollrath, F. (2002) Materials: surprising strength of silkworm silk. Nature 418, 741PubMedCrossRefGoogle Scholar
  26. Shi, J., Lua, S., Du, N., Liu, X., Song, J. (2008) Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana. Biomaterials 29, 2820–2828PubMedCrossRefGoogle Scholar
  27. Silva-Zacarin, E.C.M., De Moraes, R.L.M.S., Taboga, S.R. (2003) Silk formation mechanisms in the larval salivary glands of Apis mellifera (Hymenoptera: Apidae). J. Biosci. Bangalore. 28, 753–764CrossRefGoogle Scholar
  28. Sutherland, T.D., Campbell, P.M., Weisman, S., Trueman, H.E., Sriskantha, A., Wanjura, W.J., Haritos, V.S. (2006) A highly divergent gene cluster in honeybees encodes a novel silk family. Genome Res 16, 1414–1421. CoilPubMedCrossRefGoogle Scholar
  29. Sutherland, T.D., Weisman, S., Trueman, H.E., Sriskantha, A., Trueman, J.W.H., Haritos, V.S. (2007) Conservation of essential design features in coiled-coil silks. Mol Biol Evol 24, 2424–2432PubMedCrossRefGoogle Scholar
  30. Sutherland, T.D., Young, J., Weisman, S., Hayashi, C.Y., Merrit, D. (2010a) Insect silk: one name, many materials. Annu. Rev. Entomol. 55, 171–188PubMedCrossRefGoogle Scholar
  31. Sutherland, T.D., Haritos, V.S., Trueman, H.E., Sriskantha, A., Weisman, S., Campbell, P.M. (2010) United States Patent Application Publication. US2010/0100975 A1. April 22 2010Google Scholar
  32. Sutherland, T.D., Church, J.S., Hu, X., Huson, M.G., Kaplan, D.L., Weisman, S. (2011a) Single honeybee silk protein mimics properties of multi-protein silk. PLoS One 6(2), 16489. doi: 10.1371/journal.pone.0016489 CrossRefGoogle Scholar
  33. Sutherland, T.D., Weisman, S., Walker, A.A., Mudie, S.T. (2011b) The coiled-coil silk of bees, ants, and hornets. Biopolymers 97, 446–454PubMedCrossRefGoogle Scholar
  34. Sutherland, TD, Weisman, S, Walker, AA, and Mudie, ST (2012). Invited review: The coiled coil silk of bees, ants, and hornets. Biopolymers 97, 446–454Google Scholar
  35. Verlich, A.V. (1930) Entwicklungsmechanische Studien an Bienenlarven. Z. Wiss. Zool. 136, 210–222Google Scholar
  36. Vollrath, F., Knight, D.P. (2001) Liquid crystalline spinning of spider silk. Nature 410, 541–548PubMedCrossRefGoogle Scholar
  37. Wainwright, S.A., Biggs, W.D., Currey, J.D., Gosline, J.M. (1976) Mechanical design in organisms. Edward Arnold, LondonGoogle Scholar
  38. Warwicker, J.O. (1960) Comparative studies of fibroins: II. The crystal structures of various fibroins. J Mol Biol 2, 350–362PubMedCrossRefGoogle Scholar
  39. Woolfson, D.N. (2005) The design of coiled-coil structures and assemblies. Adv. Protein Chem. 70, 79–112PubMedCrossRefGoogle Scholar
  40. Zhang, K., Si, F.W., Duan, H.L., Karihaloo, B.L., Wang, J. (2010a) Hierarchical, multilayered cell walls reinforced by recycled silk cocoons enhance the structural integrity of honeybee combs. Proc. Nat. Acad. Sci. 107, 9502–9506PubMedCrossRefGoogle Scholar
  41. Zhang, K., Si, F.W., Duan, H.L., Wang, J. (2010b) Microstructures and mechanical properties of silks of silkworm and honeybee. Acta Biomater 6, 2165–2171PubMedCrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2013

Authors and Affiliations

  • H. Randall Hepburn
    • 1
  • Orawan Duangphakdee
    • 2
  • Christian W. W. Pirk
    • 3
    Email author
  1. 1.Department of Zoology and EntomologyRhodes UniversityGrahamstownSouth Africa
  2. 2.Ratchaburi CampusKing Mongkut’s University of TechnologyBangkokThailand
  3. 3.Social Insect Research Group, Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations