, Volume 44, Issue 5, pp 563–574 | Cite as

Sub-lethal effects of thiamethoxam, a neonicotinoid pesticide, and propiconazole, a DMI fungicide, on colony initiation in bumblebee (Bombus terrestris) micro-colonies

  • Charlotte Elston
  • Helen M. Thompson
  • Keith F. A. WaltersEmail author
Original article


This study investigated whether field-realistic exposure to a neonicotinoid insecticide and a fungicide affected nest building or brood production in queenless Bombus terrestris micro-colonies in the laboratory. Bees were exposed to honey water and pollen paste containing field-realistic mean or field-maximum exposure rates of thiamethoxam (1, 10 μg/kg) or propiconazole (23, 230 mg/kg) for 28 days. Thiamethoxam: Both doses reduced consumption of honey water solution and resulted in fewer wax cells. At 10 μg/kg, nest building initiation was delayed, fewer eggs were laid and no larvae produced. Propiconazole: Both doses reduced consumption of honey water solution. At 23 mg/kg, fewer wax cells were produced. Thus, at realistic (mean) exposure rates of these pesticides, no adverse impacts on brood production were found. Pesticide-free alternative forage will reduce field exposure by dilution and thus the impact of maximum rates.


Bombus terrestris thiamethoxam propiconazole nectar consumption nest building brood 



We thank Dr Tilly Collins for statistical advice.


  1. Abbot, V.A., Nadeau, J.L., Higo, H.A., Winston, M.L. (2008) Lethal and sublethal effects of imidacloprid on Osmia lignaria and clothianidin on Megachile rotundata (Hymenoptera: Megachilidae). J. Econ. Entomol. 101, 784–796CrossRefGoogle Scholar
  2. Bernal, J., Garrido-Bailon, E., del Nozal, M.J., Gonzales-Porto, A.V., Martin-Hernandez, R., Diego, J.C., Jimenez, J.J., Bernal, J.L., Higes, M. (2010) Overview of pesticide residues in stored pollen and their potential effect on bee colony (Apis mellifera) losses in Spain. J. Econ. Entomol. 103, 1964–1971PubMedCrossRefGoogle Scholar
  3. Blacquiere, T., Smagghe, G., van Gestel, C.A.M., Mommaerts, V. (2012) Neonicotinoids in bees: a review on concentrations, side effects and risk assessment. Ecotoxicology. 21(4), 973–992PubMedCrossRefGoogle Scholar
  4. Bortolotti, L., Montanari, R., Marcelino, J., Medrzycki, P., Maini, S., Porrini, C. (2003) Effect of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bull. Insectology. 56, 63–67Google Scholar
  5. Brattsen, L.B., Berger, D.A., Dungan, L.B. (1994) In vitro inhibition of midgut microsomal P450s from Spodoptera eridania caterpillars to demethylation inhibitor fungicides and plant growth regulators. Pest. Biochem. Physiol. 49, 234–243CrossRefGoogle Scholar
  6. Chauzat, M.P., Faucon, J.P., Martel, A.C., Lachaize, J., Cougoule, N., Aubert, M. (2006) A survey of pesticide residues in pollen loads collected by honeybees in France. J. Econ. Entomol. 99, 253–262PubMedCrossRefGoogle Scholar
  7. Chauzat, M.P., Carpentier, P., Martel, A.C., Bougeard, S., Cougoule, N., Porta, P., Lachaize, J., Madec, F., Aubert, M., Faucon, J.P. (2009) Influence of pesticide residues on honey bee (Hymenoptera: Apidae) colony health in France. Environ. Entomol. 38, 514–523PubMedCrossRefGoogle Scholar
  8. Chauzat, M.P., Martel, A.C., Cougoule, N., Porta, P., Lachaize, J., Zeggane, S., Aubert, M., Carpentier, P., Faucon, J.P. (2011) An assessment of honeybee colony matrices, Apis mellifera (Hymenoptera: Apidae) to monitor pesticide presences in continental France. Environ. Toxicol. Chem. 30, 103–111PubMedCrossRefGoogle Scholar
  9. Colin, M.E., Belzunces, L.P. (1992) Evidence of synergy between prochloraz and deltamethrin in Apis mellifera L. a convenient biological approach. Pest. Sci. 36, 115–119CrossRefGoogle Scholar
  10. Colin, M.E., Bonmatin, J.M., Moineau, I., Gaimon, C., Brun, S., Vermandere, J.P. (2004) A method to quantify and analyze the foraging activity of honey bees: relevance to the sublethal effects induced by systemic insecticides. Arch. Environ. Contam. Toxicol. 47, 387–395PubMedCrossRefGoogle Scholar
  11. Colombo, A., Buonocore, E. (1997) Effetto di trattamenti al terreno con imidacloprid sull’ attività dei bombi. L’Informatore Agrario 53, 85–87Google Scholar
  12. Crawley, M.J. (2007) The R book, p. 950. Wiley, ChichesterCrossRefGoogle Scholar
  13. Cresswell, J.E. (2011) A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honey bees. Ecotoxicology 20, 149–157PubMedCrossRefGoogle Scholar
  14. Cutler, G.C., Scott-Dupree, C.D. (2007) Exposure to clothianidin seed-treated canola has no long-term impact on honeybees. J. Econ. Entomol. 100, 765–772PubMedCrossRefGoogle Scholar
  15. Dechaume-Moncharmont, F.X., Decourtye, A., Hennequet-Hantier, C., Pons, O., Pham-Delègue, M.-H. (2003) Statistical analysis of the honeybee survival after chronic exposure to insecticides. Environ. Toxicol. Chem. 22, 3088–3094PubMedCrossRefGoogle Scholar
  16. Decourtye, A., Devillers, J. (2010) Ecotoxicity of neonicotinoids insecticides to bees. In: Thany, S.H. (ed.) Insect nicotinic acetylcholine receptors, 1st edn, pp. 85–95. Springer, New YorkCrossRefGoogle Scholar
  17. Decourtye, A., Mader, E., Desneux, N. (2010) Landscape enhancement of floral resources for honey bees in agro-ecosystems. Apidologie 41, 264–277CrossRefGoogle Scholar
  18. De la Rúa, P., Jaffé, R., Dall’Olio, R., Muñoz, I., Serrano, J. (2009) Biodiversity, conservation and current threats to European honeybees. Apidologie 40, 263–284CrossRefGoogle Scholar
  19. EFSA (2012a) Interaction between pesticides and other factors in effects on bees September 2012, p. 204. EFSA, ParmaGoogle Scholar
  20. EFSA (2012b) Draft risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees), p. 202. EFSA, ParmaGoogle Scholar
  21. EFSA (2012c) Statement on the findings in recent studies investigating sub-lethal effects in bees of some neonicotinoids in consideration of the uses currently authorised in Europe, p. 27. EFSA, ParmaGoogle Scholar
  22. Elbert, A., Haas, M., Springer, B., Thielert, W., Nauen, R. (2008) Applied aspects of neonicotinoid uses in crop protection. Pest Manage. Sci. 64, 1099–1105CrossRefGoogle Scholar
  23. Gallai, N., Salles, J.M., Settele, J., Vaissière, B.E. (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821CrossRefGoogle Scholar
  24. Garcia-Chao, M., Jesus Agruna, M., Flores Calvete, G., Sakkas, V., Llompart, M., Dagnac, T. (2010) Validation of an off line solid phase extraction liquid chromatography-tandem mass spectrometry method for the determination of systemic insecticide residues in honey and pollen samples collected in apiaries from NW Spain. Analytica Chimica Acta 672, 107–113PubMedCrossRefGoogle Scholar
  25. Gels, J.A., Held, D.W., Potter, D.A. (2002) Hazards of insecticides to the bumble bee Bombus impatiens (Hymenoptera: Apidae) foraging on flowering white clover in turf. J. Econ. Entomol. 95, 722–728PubMedCrossRefGoogle Scholar
  26. Genersch, E., von der Ohe, W., Kaatz, H., Schroeder, A., Otten, C., Büchler, R., Berg, S., Ritter, W., Mühlen, W., Gisder, S., Meixner, M., Liebig, G., Rosenkranz, P. (2010) The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41, 332–352CrossRefGoogle Scholar
  27. Gill, J.G., Ramos-Rodriguez, O., Raine, N.E. (2012) Combined pesticide exposure severely affects individual—and colony—level traits in bees. Nature. doi: 10.1038/nature11585 Google Scholar
  28. Goulson, D., Lye, G.C., Darvill, B. (2008) Decline and conservation of bumble bees. Annu. Rev. Entomol. 53, 191–208PubMedCrossRefGoogle Scholar
  29. Higes, M., Martin-Hernandez, R., Martinez-Salvador, A., Garrido-Bailon, E., Gonzalez-Porto, A.V., Meana, A., Bernal, J.L., del Nozal, M.J., Bernal, J. (2010) A preliminary study of the epidemiological factors related to honey bee colony loss in Spain. Environ. Microbiol. Rep. 2, 243–250PubMedCrossRefGoogle Scholar
  30. Isawa, T., Motyama, N., Ambrose, J.T., Roe, M.R. (2004) Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Protection 23, 371–378CrossRefGoogle Scholar
  31. Johnson, R.M., Ellis, M.D., Mullin, C.A., Frazier, M. (2010) Pesticides and honey bee toxicity—USA. Apidologie 41, 312–331CrossRefGoogle Scholar
  32. Kearns, C.A., Inouye, D.W., Waser, N.M. (1998) Endangered mutualisms: the conservation of plant pollinator interactions. Annu. Rev. Ecol. Syst. 29, 83–112CrossRefGoogle Scholar
  33. Klein, A.-M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Tscharntke, T. (2007) Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274, 303–313PubMedCrossRefGoogle Scholar
  34. Kluser, S., Neumann, P., Chauzat, M-P., Pettis, J.S. (2011). UNEP emerging issues: global honey bee colony disorder and other threats to insect pollinators.
  35. Krupke, C.H., Hunt, G.J., Eitzer, B.D., Andino, G., Given, K. (2012) Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE 7, e29268PubMedCrossRefGoogle Scholar
  36. Ladurner, E., Bosch, J., Kemp, W.P., Maini, S. (2005) Assessing delayed and acute toxicity of five formulated fungicides to Osmia lignaria Say and Apis mellifera. Apidologie. 36, 449–460CrossRefGoogle Scholar
  37. Lambin, M., Armengaud, C., Raymond, S., Gauthier, M. (2001) Imidacloprid-induced facilitation of the proboscis extension reflex habituation in the honeybee. Arch. Insect Biochem. Physiol. 48, 129–134PubMedCrossRefGoogle Scholar
  38. Laurino, D., Porporato, M., Patetta, A., Manino, A. (2011) Toxicity of neonicotinoids insecticides to honey bees in laboratory tests. Bull. Insectol. 64, 107–113Google Scholar
  39. Laycock, I., Lenthall, K.M., Barratt, A.T., Cresswell, J.E. (2012) Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumblebee (Bombus terrestris). Ecotoxicology 21, 1937–1945PubMedCrossRefGoogle Scholar
  40. Lu, C., Warchol, K.M., Callahan, R.A. (2012) In situ replication of honey bee colony collapse disorder. Bull. Insectol. 65(1), 99–106Google Scholar
  41. Maus, C., Curé, G., Schmuck, R. (2003) Safety of imidacloprid seed dressings to honey bees: a comprehensive overview and compilation of the current state of knowledge. Bull. Insectol. 56, 51–57Google Scholar
  42. Mommaerts, V., Reynders, S., Boulet, J., Besard, L., Sterk, G., Smagghe, G. (2010) Risk assessment for side-effects of neonicotinoids against bumblebees with and without impaired foraging behaviour. Ecotoxicology 19(1), 207–215PubMedCrossRefGoogle Scholar
  43. Mullin, C.A., Frazier, M., Frazier, J.L., Ashcraft, S., Simonds, R., vanEngelsdorp, D., Pettis, J.S. (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5, e9754PubMedCrossRefGoogle Scholar
  44. Nauen, R., Ebbinghaus-Kintscher, U., Schmuck, R. (2001) Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). Pest Manage. Sci 57, 577–586CrossRefGoogle Scholar
  45. Nauen, R., Ebbinghaus-Kintscher, U., Salgado, V., Kaussmann, M. (2003) Thiamethoxam is neonicotinoids precursor converted to clothianidin in insects and plants. Pest. Biochem. Physiol. 76, 55–69CrossRefGoogle Scholar
  46. Neumann, P., Carreck, N.L. (2010) Honey bee colony loss. J. Apic. Res 49, 1–6. Special issueCrossRefGoogle Scholar
  47. Nguyen, B.K., Saegerman, C., Pirard, C., Mignon, J., Widart, J., Tuirionet, B., Verheggen, F.J., Berkvens, D., De Pauw, E., Haubruge, E. (2009) Does imidacloprid seed-treated maize have an impact on honey bee mortality? J. Econ. Entomol. 102, 616–623PubMedCrossRefGoogle Scholar
  48. Pilling, E.D., Jepson, P.C. (1993) Synergism between EBI fungicides and A pyrethroid insecticide in the honeybee (Apis mellifera). Pest. Sci. 39, 293–297CrossRefGoogle Scholar
  49. Pirard, C., Widart, J., Nguyen, B.K., Deleuze, C., Heudt, L., Haubruge, E., De Pauw, E., Focant, J.F. (2007) Development and validation of a multi-residue method for pesticide determination in honey using on-column liquid–liquid extraction and liquid chromatography-tandem mass spectroscopy. J. Chromatogr. 1152, 116–123CrossRefGoogle Scholar
  50. Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O., Kunin, W.E. (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353PubMedCrossRefGoogle Scholar
  51. Singh, S.R., Walters, K.F.A., Port, G.R., Northing, P. (2004) Consumption rates and predatory activity of adult and fourth instar larvae of the seven spot ladybird Coccinella septempunctata (L.), following contact with dimethoate residues and contaminated prey in laboratory arenas. Biol. Control 30, 127–133CrossRefGoogle Scholar
  52. Solomon, M.G., Hooker, K.J.M. (1989) Chemical repellents for reducing pesticide hazard to honeybees in apple orchards. J. Apic. Res. 28, 223–227Google Scholar
  53. Tasei, J.-N., Aupinel, P. (2008) Validation of a method using queenless Bombus terrestris micro-colonies for testing the nutritive value of commercial pollen mixes by comparison with queenright colonies. J. Econ. Entomol. 101(6), 1737–1742PubMedCrossRefGoogle Scholar
  54. Tasei, J.N., Lerin, J.L., Ripault, G. (2000) Sub-lethal effects of imidacloprid on bumblebees, Bombus terrestris (Hymenoptera: Apidae) during a laboratory feeding test. Pest Manage. Sci. 56, 784–788CrossRefGoogle Scholar
  55. Tasei, J.N., Ripault, G., Rivault, E. (2001) Hazards of imidacloprid seed coating to Bombus terrestris (Hymeoptera: Apidea) when applied to sunflower. J. Econ. Entomol. 94, 623–627PubMedCrossRefGoogle Scholar
  56. Thompson, H.M., Maus, C. (2007) The relevance of sublethal effects in honey bee testing for pesticide risk assessment. Pest Manage. Sci. 63, 1058–1061CrossRefGoogle Scholar
  57. Thompson, H.M. (1996) Interactions between pesticides; a review of reported effects and their implications for wildlife risk assessment. Ecotoxicology 5, 59–81CrossRefGoogle Scholar
  58. Thompson, H.M., Wilkins, S. (2003) Assessment of the synergy and repellency of pyrethroid–fungicide mixtures. Bull. Insectol. 56, 131–134Google Scholar
  59. Thornham, D.G., Stamp, C., Walters, K.F.A., Mathers, J.J., Wakefield, M., Blackwell, A., Evans, K.A. (2007) Feeding responses of adult seven-spotted ladybirds, Coccinella septempunctata (Coleoptera, Coccinellidae), to insecticide contaminated prey in laboratory arenas. Biocontr. Sci. Technol. 17(10), 983–994CrossRefGoogle Scholar
  60. VanEngelsdorp, D., Hayes, J., Underwood, R.M., Pettis, J.S. (2010) A survey of honey bee colony losses in the United States, fall 2008 to spring 2009. J. Apic. Res. 49, 7–14CrossRefGoogle Scholar
  61. Velthuis, H.H.W., van Doorn, A. (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialisation for pollination. Apidologie 37, 421–451CrossRefGoogle Scholar
  62. Whitehorn, P.R., O’Connor, S., Wackers, F.L., Goulson, D. (2012) Neonicotinoid pesticide reduces bumblebee colony growth and queen production. Science 336, 351–352PubMedCrossRefGoogle Scholar
  63. Williams, P.H., Osbourne, J.L. (2009) Bumblebee vulnerability and conservation world-wide. Apidologie 40, 367–387CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2013

Authors and Affiliations

  • Charlotte Elston
    • 1
  • Helen M. Thompson
    • 2
  • Keith F. A. Walters
    • 1
    Email author
  1. 1.Division of Ecology and EvolutionImperial College London, Silwood Park CampusAscotUK
  2. 2.FeraYork,UK

Personalised recommendations