The potential of cleptoparasitic bees as indicator taxa for assessing bee communities

Abstract

Many factors affect bee diversity and abundance, and knowledge of these is crucial for maintaining healthy bee communities. However, there are few means to fully evaluate the status of bee communities; most are based on monitoring species richness and abundance and do not consider the diverse life histories of bees. We propose that functional diversity of bee communities offers a more consistent means of evaluation and suggest that cleptoparasitic bees in particular show much promise as indicator taxa. Cleptoparasitic bees play a stabilising role within bee communities. They represent the apex of bee communities and are the first guild to respond to disturbances, are easily distinguished as such and are diverse enough to be representative of entire bee communities. The diversity and abundance of cleptoparasites in relation to all bees is indicative of the status of the total bee community, and monitoring them should form an integral part of assessing bee communities.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.

References

  1. Balvanera, P., Pfisterer, A.B., Buchmann, N., He, J., Nakashizuka, T., Raffaelli, D., Schmid, B. (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156

    PubMed  Article  Google Scholar 

  2. Biesmeijer, J.C., Roberts, S.P.M., Reemer, M., Ohlemüller, R., Edwards, M., et al. (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and The Netherlands. Science 313, 351–354

    PubMed  Article  CAS  Google Scholar 

  3. Blondel, J. (2003) Guilds or functional groups: does it matter? Oikos 100, 223–231

    Article  Google Scholar 

  4. Bogusch, P., Kratochvíl, L., Straka, J. (2006) Generalist cuckoo bees (Hymenoptera: Apoidea: Sphecodes) are species-specialist at the individual level. Behav. Ecol. Sociobiol. 60, 422–429

    Article  Google Scholar 

  5. Cane, J.H., Minckley, R., Roulston, T., Kervin, L.J., Williams, N.M. (2006) Complex responses within a desert bee guild (Hymenoptera: Apiformes) to urban habitat fragmentation. Ecol. Appl. 16, 632–644

    PubMed  Article  Google Scholar 

  6. Cardinale, B.J., Srivastava, D.S., Duffy, J.E., Wright, J.P., Downing, A.L., Sankaran, M., Jouseau, C. (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992

    PubMed  Article  CAS  Google Scholar 

  7. Chiarucci, A., Giovanni, B., Scheiner, S.M. (2011) Old and new challenges in using species diversity for assessing biodiversity. Philos. Trans. R. Soc. London, Ser. B 366, 2426–2437

    PubMed  Article  Google Scholar 

  8. Combes, C. (1996) Parasites, biodiversity and ecosystem stability. Biodivers. Conserv. 5, 953–962

    Article  Google Scholar 

  9. Duffy, J.E. (2003) Biodiversity loss, trophic skew and ecosystem functioning. Ecol. Lett. 6, 680–687

    Article  Google Scholar 

  10. Duffy, J.E., Cardinale, B.J., France, K.E., McIntyre, P.B., Thébault, E., Loreau, M. (2007) The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol. Lett. 10, 522–538

    PubMed  Article  Google Scholar 

  11. Elmqvist, T., Folke, C., Nyström, M., Peterson, G., Bengtsson, J., Walker, B., Norberg, J. (2003) Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494

    Article  Google Scholar 

  12. Finke, D.L., Denno, R.F. (2004) Predator diversity dampens trophic cascades. Nature 429, 407–410

    PubMed  Article  CAS  Google Scholar 

  13. Grundel, R., Frohnapple, K.J., Jean, R.P., Pavlovic, N.B. (2011) Effectiveness of bowl trapping and netting for inventory of a bee community. Environ. Entomol. 40, 374–380

    Article  Google Scholar 

  14. Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., et al. (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35

    Article  Google Scholar 

  15. Horwitz, P., Wilcox, B.A. (2005) Parasites, ecosystems and sustainability: an ecological and complex systems perspective. Int. J. Parasitol. 35, 725–732

    PubMed  Article  Google Scholar 

  16. Hubbell, S.P. (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton

    Google Scholar 

  17. Hudson, P.J., Dobson, A.P., Lafferty, K.D. (2006) Is a healthy ecosystem one that is rich in parasites? Trends Ecol. Evol. 21, 381–385

    PubMed  Article  Google Scholar 

  18. Iyengar, E.V. (2008) Kleptoparasitic interactions throughout the animal kingdom and a re-evaluation, based on participant mobility, of the conditions promoting the evolution of kleptoparasitism. Biol. J. Linn. Soc. 93, 745–762

    Article  Google Scholar 

  19. Kevan, P.G., Greco, C.F., Belaoussoff, S. (1997) Log-normality of biodiversity and abundance in diagnosis and measuring of ecosystem health: pesticide stress on pollinators on blueberry heaths. J. Appl. Ecol. 34, 1122–1136

    Article  Google Scholar 

  20. Klein, A.M., Vassiere, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Tscharntke, T. (2007) Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274, 303–313

    PubMed  Article  Google Scholar 

  21. Kremen, C., Williams, N.M., Thorp, R.W. (2002) Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. USA 99, 16812–16816

    PubMed  Article  CAS  Google Scholar 

  22. Kremen, C., Williams, N.M., Bugg, R.L., Fay, J.P., Thorp, R.W. (2004) The area requirements of an ecosystem service: crop pollination by native bee communities in California. Ecol. Lett. 7, 1109–1119

    Article  Google Scholar 

  23. Magurran, A.E. (2004) Measuring Biological Diversity. Blackwell, Malden

    Google Scholar 

  24. Marcogliese, D.J. (2004) Parasites: small players with crucial roles in the ecological theater. EcoHealth 1, 151–164

    Article  Google Scholar 

  25. Marcogliese, D.J., Cone, D.K. (1997) Food webs: a plea for parasites. Trends Ecol. Evol. 12, 320–325

    PubMed  Article  CAS  Google Scholar 

  26. Michener, C.D. (1974) The Social Behavior of the Bees. Harvard University Press, Boston

    Google Scholar 

  27. Michener, C.D. (1979) Biogeography of the bees. Ann. Mo. Bot. Gard. 66, 277–347

    Article  Google Scholar 

  28. Michener, C.D. (2007) The Bees of the World, 2nd edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  29. Morand, S., Gonzalez, E.A. (1997) Is parasitism a missing ingredient in model ecosystems? Ecol. Model. 95, 61–74

    Article  Google Scholar 

  30. Moretti, M., de Bello, F., Roberts, S.P.M., Potts, S.G. (2009) Taxonomical vs. functional responses of bee communities to fire in two contrasting climatic regions. J. Anim. Ecol. 78, 98–108

    PubMed  Article  Google Scholar 

  31. National Research Council (2007) Status of Pollinators in North America. National Academies Press, Washington

  32. Neame, L.A., Griswold, T., Elle, E. (2012) Pollinator nesting guilds respond differently to urban habitat fragmentation in an oak-savannah ecosystem. Insect Conserv. Diver. 6, 57–66. doi:10.1111/j.1752-4598.2012.00187.x

    Article  Google Scholar 

  33. Nielsen, A., Steffan-Dewenter, I., Westphal, C., Messinger, O., Potts, S.G., et al. (2011) Assessing bee species richness in two Mediterranean communities: importance of habitat type and sampling techniques. Ecol. Res. 26, 969–983

    Article  Google Scholar 

  34. O’Neill, R.V., Krummel, J.R., Gardner, R.H., Sugihara, G., Jackson, B., et al. (1988) Indices of landscape pattern. Landscape Ecol. 1, 153–162

    Article  Google Scholar 

  35. Oertli, S., Muller, A., Dorn, S. (2005) Ecological and seasonal patterns in the diversity of a species-rich bee assemblage (Hymenoptera: Apoidea: Apiformes). Eur. J. Entomol. 102, 53–63

    Google Scholar 

  36. O'Gorman, E.J., Yearsley, J.M., Crowe, T.P., Emmerson, M.C., Jacob, U., Petchey, O.L. (2011) Loss of functionally unique species may gradually undermine ecosystems. Proc. R. Soc. Lond. B 278, 1886–1893

    Article  Google Scholar 

  37. Petchey, O.L., Hector, A., Gaston, K.J. (2004) How do different measures of functional diversity perform? Ecology 85, 847–857

    Article  Google Scholar 

  38. Peterson, G., Allen, C.R., Holling, C.S. (1998) Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18

    Article  Google Scholar 

  39. Polidori, C., Borruso, L., Boesi, R., Andrietti, F. (2009) Segregation of temporal and spatial distribution between kleptoparasites and parasitoids of the eusocial sweat bee, Lasioglossum malachurum (Hymenoptera: Halictidae, Mutillidae). Entomol. Sci. 12, 116–129

    Article  Google Scholar 

  40. Rosenheim, J.A. (1990) Density-dependent parasitism and the evolution of nesting aggregations in the solitary Hymenoptera. Ann. Entomol. Soc. Amer. 83, 277–286

    Google Scholar 

  41. Roulston, T.H., Smith, S.A., Brewster, A.L. (2007) A comparison of pan trap and intensive net sampling techniques for documenting a bee (Hymenoptera: Apiformes) fauna. J. Kansas Entomol. Soc. 80, 179–181

    Article  Google Scholar 

  42. Rozen Jr., J.G. (2001) A taxonomic key to mature larvae of cleptoparasitic bees (Hymenoptera: Apoidea). Amer. Mus. Nov. 3309, 1–28

    Article  Google Scholar 

  43. Scrosati, R.A., van Genne, B., Heaven, C.S., Watt, C.A. (2011) Species richness and diversity in different functional groups across environmental stress gradients: a model for marine rocky shores. Ecography 34, 151–161

    Article  Google Scholar 

  44. Sheffield, C.S., Kevan, P.G., Westby, S.M., Smith, R.F. (2008) Diversity of cavity-nesting bees (Hymenoptera: Apoidea) within apple orchards and wild habitats in the Annapolis Valley, Nova Scotia. Canada. Can. Ent. 140, 235–249

    Article  Google Scholar 

  45. Sheffield, C.S., Kevan, P.G., Pindar, A., Packer, L. (2013) Bee (Hymenoptera: Apoidea) diversity within apple orchards and old fields habitats in the Annapolis Valley, Nova Scotia, Canada. Can. Ent. 145, 94–114

    Google Scholar 

  46. Tilman, D., Lehman, C. (2001) Biodiversity, composition, and ecosystem processes: theory and concepts. In: Kinzig, A.P., Pacala, S.W., Tilman, D. (eds.) The Functional Consequences Of Biodiversity: Empirical Progress and Theoretical Extensions, pp. 9–41. Princeton University Press, Princeton

    Google Scholar 

  47. Toler, T.R., Evans, E.W., Tepedino, V.J. (2005) Pan-trapping for bees (Hymenoptera: Apiformes) in Utah’s West Desert: the importance of color diversity. Pan-Pac. Entomol. 81, 103–113

    Google Scholar 

  48. Walker, B.H. (1992) Biological diversity and ecological redundancy. Conserv. Biol. 6, 18–23

    Article  Google Scholar 

  49. Wcislo, W.T. (1981) The roles of seasonality, host synchrony, and behaviour in the evolutions and distributions of nest parasites in the Hymenoptera (Insecta), with special reference to bees (Apoidea). Biol. Rev. 62, 515–543

    Article  Google Scholar 

  50. Westphal, C., Bommarco, R., Carré, G., Lamborn, E., Morison, N., et al. (2008) Measuring bee diversity in different European habitats and biogeographical regions. Ecol. Mono. 78, 654–671

    Article  Google Scholar 

  51. Williams, N.M., Crone, E.E., Roulston, T.H., Minckley, R.L., Packer, L., Potts, S.G. (2010) Ecological and life-history traits predict bee species responses to environmental disturbances. Biol. Conserv. 143, 2280–2291

    Article  Google Scholar 

  52. Wood, C.L., Byers, J.E., Cottingham, K.L., Altman, I., Donahue, M.J., Blakeslee, A.M.H. (2007) Parasites alter community structure. Proc. Natl. Acad. Sci. USA 104, 9335–9339

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

The initial study was completed as part of the requirements of the doctoral thesis of CSS. We thank the orchardists and land owners that kindly provided CSS access to properties throughout the study, and staff at the Atlantic Food and Horticulture Research Centre, Agriculture & Agri-Food Canada for support. The initial work was funded by several Agri-Focus 2000 Technology Development Project grants and an AgriFutures grant to CSS. Further development of ideas presented here was funded by the National Science and Engineering Research Council (NSERC) Canadian Pollination Initiative (CANPOLIN) to LP and PGK. This is contribution number 68 of the Canadian Pollination Initiative.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cory S. Sheffield.

Additional information

Le potentiel des abeilles cleptoparasites comme taxa indicateurs dans l’évaluation des communautés d’abeilles

Communauté des pollinisateurs / guilde / santé des écosystèmes / espèces indicatrices

Die Möglichkeit, kleptoparasitische Bienen als Indikatoren zur Beurteilung von Bienengemeinschaften zu verwenden

Bestäubergemeinschaften / Gildenstrukturen / Kleptoparasiten / Indikatortaxa / Ökosystemstatus

Manuscript Editor: David Tarpy

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sheffield, C.S., Pindar, A., Packer, L. et al. The potential of cleptoparasitic bees as indicator taxa for assessing bee communities. Apidologie 44, 501–510 (2013). https://doi.org/10.1007/s13592-013-0200-2

Download citation

Keywords

  • pollinator communities
  • guild structure
  • cleptoparasites
  • indicator taxa
  • ecosystem health