Abstract
Most studies that have shown negative sublethal effects of the pesticide imidacloprid on honeybees concern behavioral effects; only a few concern physiological effects. Therefore, we investigated sublethal effects of imidacloprid on the development of the hypopharyngeal glands (HPGs) and respiratory rhythm in honeybees fed under laboratory conditions. We introduced newly emerged honeybees into wooden mesh-sided cages and provided sugar solution and pollen pastry ad libitum. Imidacloprid was administered in the food: 2 μg/kg in the sugar solution and 3 μg/kg in the pollen pastry. The acini, the lobes of the HPGs of imidacloprid-treated honeybees, were 14.5 % smaller in diameter in 9-day-old honeybees and 16.3 % smaller in 14-day-old honeybees than in the same-aged untreated honeybees; the difference was significant for both age groups. Imidacloprid also significantly affected the bursting pattern of abdominal ventilation movements (AVM) by causing a 59.4 % increase in the inter-burst interval and a 56.99 % decrease in the mean duration of AVM bursts. At the same time, the quantity of food consumed (sugar solution and pollen pastry) per honeybee per day was the same for both treated and untreated honeybees.
This is a preview of subscription content, access via your institution.





References
Alaux, C., Brunet, J.L., Dussaubat, C., Mondet, F., Tchamitchan, S., Cousin, M., Brillard, J., Baldy, A., Belzunces, L.P., Le Conte, Y. (2010) Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. Microbiol. 12(3), 774–782
Babendreier, D., Kalbere, R.N.M., Romeis, J., Fluri, P., Mulligan, E., Bigler, F. (2005) Influence of Bt-transgenic pollen, Bt-toxin and protease inhibitor (SBTI) ingestion on development of the hypopharyngeal glands in honeybees. Apidologie 36, 585–594
Benson, J.A. (1992) Electrophysiological pharmacology of the nicotinic and muscarinic cholinergic responses of isolated neuronal somata from locust thoracic ganglia. J. Exp. Biol. 170, 203–233
Berger, B., Carmargo Abdalla, F. (2005) Braz. J Morphol. Sci 22(1), 1–4
Bonmatin, J.M., Moineau, I., Lecoublet, S., Colin, M. E., Fléché, C., Bengsch E. R. (2001) Neurotoxiques systémiques: Biodisponibilité, toxicité et risques pour les insectes pollinisateurs - le cas de l’imidaclopride. In Proceedings of the 30éme Congrés du Groupe Français des Pesticides, Produits phytosanitaires; Couderchet, M., Eullaffroy, P., Vernet, G., Eds.; Presses Universitaires de Reims: Reims, France, pp: 175–181.
Bonmatin, J.M., Moineau, I., Charvet, R., Fleche, C., Colin, M.E., Bengsch, E.R. (2003) A LC/APCI-MS/MS method for analysis of imidacloprid in soils, in plants, and in pollens. Anal. Chem. 7, 2027–2033
Bonmatin, J.M., Marchand, P.A., Charvet, R., Moineau, I., Bengsch, E.R., Colin, M.E. (2005) Quantification of imidacloprid uptake in maize crops. J. Agric. Food. Chem. 53, 5336–5341
Bortolotti, L., Montanari, R., Marcelino, J., Medrzycki, P., Maini, S., Porrini, C. (2003) Effects of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bull. Insectology 56(1), 63–67
Breer, H., Sattelle, D.B. (1987) Molecular properties and functions of insect acetylcholine receptors. J. Insect Physiol. 33, 771–790
Brown, L.A., Ihara, M., Buckingham, S.D., Matsuda, K., Sattelle, B.D. (2006) Neonicotinoid insecticides display partial and super agonist actions on native insect nicotinic acetylcholine receptors. J. Neurochem. 99, 608–615
Buckingham, S.D., Lapied, B., Corronc, H.L., Grolleau, F.D., Sattelle, D.B. (1997) Imidacloprid actions on insect neuronal acetylcholine receptors. J. Exp. Biol. 200, 2685–2692
Bujok, B., Kleinhenz, M., Fuchs, S. (2002) Hot spots in the bee hive. Naturwissenschaften 89, 229–301
Bustami, H.P., Hustert, R. (2000) Typical ventilatory pattern of the intact locust is produced by the isolated CNS. J. Insect Physiol. 46, 1285–1293
Chapman, R.F. (1988) Sensory aspects of host-plant recognition by Acridoidea: questions associated with the multiplicity of receptors and variability of response. J. Insect Physiol. 34, 167–74
Chauzat, M.P., Faucon, J.P., Martel, A.C., Lachaize, J., Cougoule, N., Aubert, M. (2006) A survey of pesticide residues in pollen loads collected by honey bees in France. J. Econ. Entomol. 99, 253–262
Chauzat, M.P., Martel, A.C., Cougoule, N., Porta, P., Lachaize, J., Zeggane, S., Aubert, M., Carpentier, P., Faucon, J.P. (2011) An assessment of honeybee colony matrices, Apis mellifera (Hymenoptera Apidae) to monitor pesticide presences in continental France. Environ. Toxicol. Chem. 30, 103–111
Colin, M.E., Bonmatin, J.M., Moineau, I., Gaimon, C., Brun, S., Vermandere, J.P. (2004) A method to quantify and analyze the foraging activity of honey bees: relevance to the sublethal effects induced by systemic insecticides. Arch. Environ. Contam. Toxicol. 47, 387–395
Contreras, H.L., Bradley, T.J. (2010) Transitions in insect respiratory patterns are controlled by changes in metabolic rate. J. Insect Physiol. 56, 522–528
Crailsheim, K., Stolberg, E. (1989) Influence of diet, age and colony condition upon intestinal proteolytic activity and size of the hypopharyngeal glands in the honeybee (Apis mellifera L.). J. Insect Physiol 35, 595–602
Crailsheim, K., Schneider, L.H.W., Hrassnigg, N., Bühlmann, G., Brosch, U., Gmeinbauer, R., Schöffmann, B. (1992) Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): Dependence on individual age and function. J. Insect Physiol. 38, 409–419
Decourtye, A., Lacassie, E., Pham-Delegue, M.H. (2003) Learning performances of honeybees (Apis mellifera L) are differentially affected by imidacloprid according to the season. Pest Manag. Sci. 59, 269–278
Decourtye, A., Devillers, J., Cluzeau, S., Charreton, M., Pham-Delegue, M.H. (2004a) Effects of imidacloprid and deltamethrin on associative learning in honeybee under semi-field and laboratory conditions. Ecotoxicol. Environ. Saf. 57, 410–419
Decourtye, A., Armengaud, C., Renou, M., Devillers, J., Cluzeau, S., Gauthier, M., Pham-Delegue, M.H. (2004b) Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pest. Biochem. Physiol. 78, 83–92
Deseyn, J., Billen, J. (2005) Age-dependent morphology and ultrastructure of the hypopharyngeal gland of Apis mellifera L. workers (Hymenoptera, Apidae). Apidologie 36, 49–57
Fluri, P., Lucher, M., Wille, H., Gerig, L. (1982) Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone protein and vitellogenin in worker honey bees. J. Insect Physiol. 28, 61–68
Girolami, V., Mazzon, L., Squartini, A., Mori, N., Marzaro, M., Di Bernardo, A., Greatti, M., Giorio, C., Tapparo, A. (2009) Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees. J. Econ. Entomol. 102(5), 1808–1815
Girolami, V., Marzaro, M., Vivan, L., Mazzon, L., Greatti, M., Giorio, C., Marton, D., Tapparo, A. (2011) Fatal powdering of bees in flight with particulates of neonicotinoids seed coating and humidity implication. J. Appl. Entomol. 136(1–2), 17–26
Greatti, M., Sabatini, A.G., Barbattini, R., Rossi, S., Stravisi, A. (2003) Risk of environmental contamination by the active ingredient imidacloprid used for corn seed dressing. Preliminary results. Bull. Insectology 56, 69–72
Greatti, M., Barbattini, R., Stravisi, A., Sabatini, A.G., Rossi, S. (2006) Presence of the a.i. imidacloprid on vegetation near corn fields sown with Gaucho® dressed seeds. Bull. Insectology 59, 99–103
Guez, D., Suchail, S., Gauthier, M., Maleszka, R., Belzunces, L.P. (2001a) Sublethal effects of imidacloprid on learning and memory in honeybees. In: Proceedings of the 7th International Symposium “Hazards of pesticides to bees”, September 7–9, 1999, Avignon, France (Belzunces L. P., Pelissier C., Lewis G. B., Eds). Les Colloques de l’INRA, 98, 279.
Guez, D., Suchail, S., Gauthier, M., Maleszka, R., Belzunces, L.P. (2001b) Contrasting effects of imidacloprid on habituation in 7- and 8- day-old honeybees (Apis mellifera). Neurobiol. Learn. Mem. 76, 183–191
Haydak, M.H. (1970) Honey bee nutrition. Annu. Rev. Entomol. 15, 143–156
Heinrich, B. (1972) Physiology of brood incubation in the bumblebee queens, Bombus vosnesenskii. Nature 239, 223–225
Heinrich, B. (1985) The social physiology of temperature regulation in honeybees, in: Holldobler J.M., Lindauer G. (Eds.), Experimental Behavioral Ecology. Fortschr. Zool. 31, 393–406
Henry, M., Beguin, M., Requir, F., Rollin, O., Odoux, J-F., Aupinel, P., Aptel, J., Tchamitchian, S., Decourtye, A. (2012) A common pesticide decreases foraging success and survival in honey bees. Scienc 336(6079):348–350. doi:10.1126/science.1215039.
Heylen, K., Gobin, B., Arckens, L., Huybrechts, R., Billen, J. (2010) The effects of four crop protection products on the morphology and ultrastructure of the hypopharyngeal gland of the European honeybee, Apis mellifera. Apidologie 42, 103–116
Hrassnigg, N., Crailsheim, K. (1998) The influence of brood on the pollen consumption of worker bees (Apis mellifera L.). J. Insect. Physiol. 44, 393–404
Jeschke, P., Nauen, R., Schindler, M., Elbert, A. (2011) Overview of the Status and Global Strategy for Neonicotinoids. J. Agric. Food Chem. 59(7), 2897–2908
Ishay, J. (1972) Thermoregulatory pheromones in wasps. Experienta 28, 1185–1187
Kaiser, W. (1988) Busy bees need rest, too: behavioural and electromyographical sleep signs in honeybees. J. Comp. Physiol. A 163, 565–584
Khoury, D.S., Myerscough, M.R., Barron, A.B. (2011) A quantitative model of honey bee colony population dynamics. Plos One 6, e18491
Kirchner, W.H. (1999) Mad-bee-disease? Sublethal effects of Imidacloprid (Gaucho ®) on the behavior of honey-bees. Apidologie 30, 422
Knecht, D., Kaatz, H.H. (1990) Patterns of larval food production by hypopharyngeal glands in adult worker honey bees. Apidologie 21, 457–468
Kovac, H., Stabentheiner, A., Hetz, S.K., Petz, M., Crailsheim, K. (2007) Respiration of resting honeybees. J. Insect. Physiol. 53, 1250–1261
Kühnholz, S., Seeley, T.D. (1997) The control of water collection in honey bee colonies. Behav. Ecol. Sociobiol. 41, 407–422
Lambin, M., Armengaud, C., Raymond, S., Gauthier, M. (2001) Imidacloprid induced facilitation of the proboscis extension reflex habituation in the honeybee. Arch. Insect Biochem. Physiol. 48, 129–134
Lass, A., Crailsheim, K. (1996) Influence of age and caging upon protein metabolism, hypopharyngeal glands and trophallactic behavior in the honey bee (Apis mellifera L). Insectes Soc. 43, 347–358
Lighton, J.R.B., Lovegrove, B.G. (1990) A temperature-induced switch from diffusive to connective ventilation in the honeybee. J. Exp. Biol. 154, 509–516
Maini, S., Medrycki, P., Porrini, C. (2010) The puzzle of honey bee losses: a brief review. Bull. Insectology 63, 153–160
Malone, L.A., Todd, J.H., Burgess, E.P.J., Christeller, J.T. (2004) Development of hypopharyngeal glands in adult honey bees fed with a Bt toxin, a biotin binding protein and a protease inhibitor. Apidologie 35, 655–664
Marzaro, M., Vivan, L., Targa, A., Mazzon, L., Mori, N., Greatti, M., Toffolo, E.P., Di Bernardo, A., Giorio, C., Marton, D., Tapparo, A., Girolami, V. (2011) Lethal aerial powdering of honey bees with neonicotinoids from fragments of maize seed coat. Bull. Insectology 64, 119–126
Matsuda, K., Buckingham, S.D., Kleier, D., Rauh, J.J., Grauso, M., Sattelle, D.B. (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol. Sci. 22, 573–580
Matsuda, K., Shimomura, M., Ihara, M., Akamatsu, M., Satelle, D.B. (2005) Neonicotinoids show selective and diverse actions on their nicotinic receptor targets: electrophysiology, molecular biology, and receptor modelling studies. Biosci. Biotechnol. Biochem 69, 1442–1452
Nicolas, H., Badre, M., Martin, E., Robin, L., Cooper, T. (2005) The physiological and behavioral effects of carbon dioxide on Drosophila melanogaster larvae. Comp. Biochem. Physiol. A 140, 363–376
Ohashi, K., Natori, S., Kubo, T. (1997) Change in the mode of gene expression of the hypopharingeal gland cells with an age-dependent role change of the worker honeybee Apis mellifera L. Eur. J. Biochem. 249, 797–802
Ramirez, J.M., Pearson, K.G. (1989) Distribution of intersegmental interneurones that can reset the respiratory rhythm of the locust. J. Exp. Biol. 141, 151–176
Ramirez-Romero, R., Chaufaux, J., Pham-Delegue, M.H. (2005) Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie 36, 601–611
Rhodes, J.W., Somerrville, D.C. (2003) Introduction and early performance of queen bees. Report : Rural Industries Research & Development Corporation, NSW Agriculture Pub# 03/049.
Rortais, A., Arnold, G., Halm, M.P., Touffet-Briens, F. (2005) Modes of honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees. Apidologie 36, 71–83
Seeley, T.D., Heinrich, B. (1981) Regulation of temperature in the nests of social insects. In: Heinrich, B. (ed.) Insect thermoregulation, pp. 159–234. Wiley, New York
Shawky, S., Abdel-Geleel, Μ., Aly, A. (2005) Sorption of uranium by non-living water hyacinth roots. J. Radioanal. Nucl. Chem. 265(1), 81–84
Simpson, J. (1961) Nest climate regulation in honey bee colonies. Science 133, 1327–1333
Smodiš Šker, M.I., Gregorc, A. (2010) Heat shock proteins and cell death in situ localisation in hypopharyngeal glands of honeybee (Apis mellifera carnica) workers after imidacloprid or coumaphos treatment. Apidologie 41, 73–86
Standifer, L.N. (1967) A comparison of the protein quality of pollens for growth-stimulation of the hypopharyngeal glands and longevity of honey bees, Apis mellifera. (Hymenoptera: Apidae). Insectes Soc 14, 415–426
Stork, A. (1999) A residue of 14C-NTN33893 (imidacloprid) in blossoms of sunflowers (Helianthus annus) after seed dressing, p. 56. Bayer A. G., Crop Protection Development, Institute for Metabolism Research and Residue Analysis, Leverkusen
Suchail, S., De Sousa, G., Rahmani, R., Belzunces, L. (2004) In vivo distribution and metabolization of 14Cimidacloprid in different compartments of Apis mellifera L. Pest Manag. Sci. 60, 1056–1062
Vidau, C., Diogon, M., Aufauvre, J., Fontbonne, R., Viguès, B., et al. (2011) Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS ONE 6(6), e21550
Visscher, H., Brinkhuiss, H., Dilcher, D.L., Elsik, W.C., Eshet, Y., Looy, C.V., Rampino, M.R., Traverse, A. (1996) The terminal Paleozoic fungal event: Evidence of terrestrial ecosystem destabilization and collapse. Proc. Natl. Acad. Sci. USA 93, 2155–2158
Der Wang, L., Moller, F.E. (1969) Histological comparisons of the development of hypopharyngeal glands in healthy and Nosema-infect worker honey bees. J. Invertebr. Pathol. 17, 308–320
Winston, M.L. (1987) The biology of the honey bee, p. 281. Harvard University Press, Cambridge
Wolf, T.J., Schmid-Hempel, P., Ellington, C.P., Stevenson, R.D. (1989) Physiological correlates of foraging efforts in honey-bees: oxygen consumption and nectar load. Funct. Ecol. 3, 417–424
Yang, E.C., Chuang, Y.C., Chen, Y.L., Chang, L.H. (2008) Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 101, 1743–1748
Zafeiridou, G., Theophilidis, G. (2004) The action of the insecticide imidacloprid on the respiratory rhythm of an insect: the beetle Tenebrio molitor. Neurosci. Lett. 365, 205–209
Zafeiridou, G., Theophilidis, G. (2006) A simple method for monitoring the respiratory rhythm in intact insects and assessing the neurotoxicity of insecticide. Pestic. Biochem. Physiol. 87, 211–217
Acknowledgments
This work was supported by a joint project from the EU and the Greek Ministry of Agricultural Development and Food (2008–2010) and by a Greek-French bilateral collaboration project, PLATON 09 FR75. We thank Dimitra Fouka, laboratory technician in Hellenic Institute of Apiculture, for technical assistance. We are also profoundly indebted to Sharilynn Wardrop, for stylistic and linguistic improvements as well to the anonymous reviewers for valuable suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript editor: Monique Gauthier
Des doses sublétales d’imidaclopride réduisent la taille des glandes hypopharyngiennes et agissent sur le rythme respiratoire des abeilles
Insecticide / abeille / essai en laboratoire / respiration / glande salivaire
Subletale Imidaclopriddosierungen verringern die Größe der Futtersaftdrüsen und den Atemrhythmus von Honigbienen in vivo
Imidacloprid / Honigbiene / Futtersaftdrüse / Atemrhythmus
Rights and permissions
About this article
Cite this article
Hatjina, F., Papaefthimiou, C., Charistos, L. et al. Sublethal doses of imidacloprid decreased size of hypopharyngeal glands and respiratory rhythm of honeybees in vivo. Apidologie 44, 467–480 (2013). https://doi.org/10.1007/s13592-013-0199-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13592-013-0199-4