Skip to main content
Log in

Two-dimensional proteomic analysis of honeybee, Apis mellifera, winter worker hemolymph

  • Original article
  • Published:
Apidologie Aims and scope Submit manuscript

An Erratum to this article was published on 16 October 2013

Abstract

Honeybee (Apis mellifera Linnaeus) colonies in temperate zones produce either summer bees, which have a lifespan of 15 to 48 days, or winter bees, which emerge in late summer and live up to 8 months. Winter bees develop unique physiological conditions characterized by changes in protein composition that appear to be major determinants of honeybee lifespan. We analyzed winter honeybee worker hemolymph using a proteomic approach for the first time. Hemolymph collected from the dorsal vessel of winter honeybees using a glass capillary tube was analyzed using two-dimensional gel electrophoresis followed by MALDI TOF/TOF protein identification. Overall, 93 spots were assigned significance (P < 0.05). Many identified proteins corresponded well with extended lifespan. Vitellogenin subunits (mainly ∼180 and ∼100 kDa) comprised the major portion of the proteins; however, vitellogenin dominance repressed the signals of the lower-abundance proteins. Future physiological studies related to overwintering bees, including health, immunity, longevity, nutrition, and/or colony losses, can benefit from these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

REFERENCES

  • Amdam, G.V., Omholt, S.W. (2002) The regulatory anatomy of honeybee lifespan. J. Theor. Biol. 216, 209–228

    Article  PubMed  Google Scholar 

  • Amdam, G.V., Norberg, K., Hagen, A., Omholt, S.W. (2003) Social exploitation of vitellogenin. Proc. Natl. Acad. Sci. USA 100, 1799–1802

    Article  PubMed  CAS  Google Scholar 

  • Amdam, G.V., Simoes, Z.L.P., Hagen, A., Norberg, K., Schroder, K., Mikkelsen, O., Kirkwood, T.B.L., Omholt, S.W. (2004) Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees. Exp. Gerontol. 39, 767–773

    Article  PubMed  CAS  Google Scholar 

  • Arrese, E.L., Soulages, J.L. (2010) Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225

    Article  PubMed  CAS  Google Scholar 

  • Arunachalam, B., Phan, U.T., Geuze, H.J., Cresswell, P. (2000) Enzymatic reduction of disulfide bonds in lysosomes: characterization of a gamma-interferon-inducible lysosomal thiol reductase (GILT). Proc. Natl. Acad. Sci. USA 97, 745–750

    Article  PubMed  CAS  Google Scholar 

  • Bogaerts, A., Baggerman, G., Vierstraete, E., Schoofs, L., Verleyen, P. (2009) The hemolymph proteome of the honeybee: gel-based or gel-free? Proteomics 9, 3201–3208

    Article  PubMed  CAS  Google Scholar 

  • Brouwers, E.V.M. (1983) Activation of the hypopharyngeal glands of honeybees in winter. J. Apic. Res. 22, 137–141

    CAS  Google Scholar 

  • Burmester, T. (2002) Origin and evolution of arthropod hemocyanins and related proteins. J. Comp. Physiol. B 172, 95–107

    Article  PubMed  CAS  Google Scholar 

  • Burmester, T., Hankeln, T. (2007) The respiratory proteins of insects. J. Insect Physiol. 53, 285–294

    Article  PubMed  CAS  Google Scholar 

  • Burmester, T., Scheller, K. (1999) Ligands and receptors: common theme in insect storage protein transport. Naturwissenschaften 86, 468–474

    Article  PubMed  CAS  Google Scholar 

  • Burmester, T., Massey Jr., H.C., Zakharkin, S.O., Benes, H. (1998) The evolution of hexamerins and the phylogeny of insects. J. Mol. Evol. 47, 93–108

    Article  PubMed  CAS  Google Scholar 

  • Cardoen, D., Ernst, U.R., van Vaerenbergh, M., Boerjan, B., de Graaf, D.C., Wenseleers, T., Schoofs, L., Verleyen, P. (2011) Differential proteomics in dequeened honeybee colonies reveals lower viral load in hemolymph of fertile worker bees. PLoS One 6, e20043

    Article  PubMed  CAS  Google Scholar 

  • Chan, Q.W.T., Foster, L.J. (2008) Changes in protein expression during honey bee larval development. Genome Biol. 9, R156

    Article  PubMed  Google Scholar 

  • Chan, Q.W.T., Howes, C.G., Foster, L.J. (2006) Quantitative comparison of caste differences in honeybee hemolymph. Mol. Cell. Proteomics 5, 2252–2262

    Article  PubMed  CAS  Google Scholar 

  • Cunha, A.D., Nascimento, A.M., Guidugli, K.R., Simoes, Z.L.P., Bitondi, M.M.G. (2005) Molecular cloning and expression of a hexamerin cDNA from the honey bee, Apis mellifera. J. Insect Physiol. 51, 1135–1147

    Article  PubMed  CAS  Google Scholar 

  • Dainat, B., Evans, J.D., Chen, Y.P., Gauthier, L., Neumann, P. (2012) Predictive markers of honey bee colony collapse. PLoS One 7, e32151

    Article  PubMed  CAS  Google Scholar 

  • Danty, E., Arnold, G., Burmester, T., Huet, J.C., Huet, D., Pernollet, J.C., Masson, C. (1998) Identification and developmental profiles of hexamerins in antenna and hemolymph of the honeybee, Apis mellifera. Insect Biochem. Mol. Biol. 28, 387–397

    Article  PubMed  CAS  Google Scholar 

  • do Nascimento, A.M., Cuvillier-Hot, V., Barchuk, A.R., Simoes, Z.L.P., Hartfelder, K. (2004) Honey bee (Apis mellifera) transferrin-gene structure and the role of ecdysteroids in the developmental regulation of its expression. Insect Biochem. Mol. Biol. 34, 415–424

    Article  PubMed  Google Scholar 

  • Dunkov, B., Georgieva, T. (2006) Insect iron binding proteins: insights from the genomes. Insect Biochem. Mol. Biol. 36, 300–309

    Article  PubMed  CAS  Google Scholar 

  • Engels, W. (1974) Occurrence and significance of vitellogenins in female castes of social Hymenoptera. Amer. Zool. 14, 1229–1237

    CAS  Google Scholar 

  • Engels, W., Fahrenhorst, H. (1974) Age-dependent and caste-dependent changes in hemolymph protein patterns of Apis mellifera. Wilhelm Roux Arch. Entwickl. Mech. Org. 174, 285–296 [in German]

    Article  Google Scholar 

  • Finn, R.N., Kolarevic, J., Kongshaug, H., Nilsen, F. (2009) Evolution and differential expression of a vertebrate vitellogenin gene cluster. BMC Evol. Biol. 9, 2

    Article  PubMed  Google Scholar 

  • Fluri, P. (1990) How long do worker honeybees live? Schweiz. Bienenztg 113, 620–625 [in German]

    Google Scholar 

  • Fluri, P., Wille, H., Gerig, L., Luscher, M. (1977) Juvenile hormone, vitellogenin and haemocyte composition in winter worker honeybees (Apis mellifera). Experientia 33, 1240–1241

    Article  CAS  Google Scholar 

  • Fluri, P., Luscher, M., Wille, H., Gerig, L. (1982) Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone and vitellogenin in worker honeybees. J. Insect Physiol. 28, 61–68

    Article  CAS  Google Scholar 

  • Franck, P., Garnery, L., Solignac, M., Cornuet, J.M. (1998) The origin of West European subspecies of honeybees (Apis mellifera): new insights from microsatellite and mitochondrial data. Evolution 52, 1119–1134

    Article  CAS  Google Scholar 

  • Geiser, D.L., Winzerling, J.J. (2012) Insect transferrins: multifunctional proteins. Biochim. Biophys. Acta, Gen. Subj. 1820, 437–451

    Article  CAS  Google Scholar 

  • Guidugli, K.R., Piulachs, M.D., Belles, X., Lourenco, A.P., Simoes, Z.L.P. (2005) Vitellogenin expression in queen ovaries and in larvae of both sexes of Apis mellifera. Arch. Insect. Biochem. Physiol. 59, 211–218

    Article  PubMed  CAS  Google Scholar 

  • Havukainen, H., Halskau, O., Skjaerven, L., Smedal, B., Amdam, G.V. (2011) Deconstructing honeybee vitellogenin: novel 40 kDa fragment assigned to its N terminus. J. Exp. Biol. 214, 582–592

    Article  PubMed  CAS  Google Scholar 

  • Herman, W.S., Tatar, M. (2001) Juvenile hormone regulation of longevity in the migratory monarch butterfly. Proc. R. Soc. Lond. B 268, 2509–2514

    Article  CAS  Google Scholar 

  • Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443, 931–949

    Article  Google Scholar 

  • Hrassnigg, N., Crailsheim, K. (1998) Adaptation of hypopharyngeal gland development to the brood status of honeybee (Apis mellifera L.) colonies. J. Insect. Physiol. 44, 929–939

    Article  PubMed  CAS  Google Scholar 

  • Hrassnigg, N., Leonhard, B., Crailsheim, K. (2003) Free amino acids in the haemolymph of honey bee queens (Apis mellifera L.). Amino Acids 24, 205–212

    PubMed  CAS  Google Scholar 

  • Huang, Z.Y., Robinson, G.E. (1995) Seasonal changes in juvenile hormone titers and rates of biosynthesis in honey bees. J. Comp. Physiol. B 165, 18–28

    Article  PubMed  CAS  Google Scholar 

  • Kawamura, K., Shibata, T., Saget, O., Peel, D., Peter, J. (1999) A new family of growth factors produced by the fat body and active on Drosophila imaginal disc cells. Development 126, 211–219

    PubMed  CAS  Google Scholar 

  • Lavine, M.D., Strand, M.R. (2002) Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32, 1295–1309

    Article  PubMed  CAS  Google Scholar 

  • Leta, M.A., Gilbert, C., Morse, R.A. (1996) Levels of hemolymph sugars and body glycogen of honeybees (Apis mellifera L) from colonies preparing to swarm. J. Insect Physiol. 42, 239–245

    Article  CAS  Google Scholar 

  • Levy, F., Bulet, P., Ehret-Sabatier, L. (2004) Proteomic analysis of the systemic immune response of Drosophila. Mol. Cell. Proteomics 3, 156–166

    PubMed  CAS  Google Scholar 

  • Li, J.K., Feng, M., Zhang, L., Zhang, Z.H., Pan, Y.H. (2008) Proteomics analysis of major royal jelly protein changes under different storage conditions. J. Proteome Res. 7, 3339–3353

    Article  PubMed  CAS  Google Scholar 

  • Li, J.K., Wu, J., Rundassa, D.B., Song, F.F., Zheng, A.J., Fang, Y. (2010) Differential protein expression in honeybee (Apis mellifera L.) larvae: underlying caste differentiation. PLoS One 5, e13455

    Article  PubMed  Google Scholar 

  • Lourenco, A.P., Zufelato, M.S., Bitondi, M.M.G., Simoes, Z.L.P. (2005) Molecular characterization of a cDNA encoding prophenoloxidase and its expression in Apis mellifera. Insect Biochem. Mol. Biol. 35, 541–552

    Article  PubMed  CAS  Google Scholar 

  • Mackert, A., do Nascimento, A.M., Bitondi, M.M.G., Hartfelder, K., Simoes, Z.L.P. (2008) Identification of a juvenile hormone esterase-like gene in the honey bee, Apis mellifera L.—Expression analysis and functional assays. Comp. Biochem. Physiol. B 150, 33–44

    Article  PubMed  Google Scholar 

  • Mann, C.J., Anderson, T.A., Read, J., Chester, S.A., Harrison, G.B., Kochl, S., Ritchie, P.J., Bradbury, P., Hussain, F.S., Amey, J., Vanloo, B., Rosseneu, M., Infante, R., Hancock, J.M., Levitt, D.G., Banaszak, L.J., Scott, J., Shoulders, C.C. (1999) The structure of vitellogenin provides a molecular model for the assembly and secretion of atherogenic lipoproteins. J. Mol. Biol. 285, 391–408

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer, A., Lu, S.N., Anderson, J.B., Chitsaz, F., Derbyshire, M.K., DeWeese-Scott, C., Fong, J.H., Geer, L.Y., Geer, R.C., Gonzales, N.R., Gwadz, M., Hurwitz, D.I., Jackson, J.D., Ke, Z.X., Lanczycki, C.J., Lu, F., Marchler, G.H., Mullokandov, M., Omelchenko, M.V., Robertson, C.L., Song, J.S., Thanki, N., Yamashita, R.A., Zhang, D.C., Zhang, N.G., Zheng, C.J., Bryant, S.H. (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39, D225–D229

    Article  PubMed  CAS  Google Scholar 

  • Martins, J.R., Nunes, F.M.F., Simoes, Z.L.P., Bitondi, M.M.G. (2008) A honeybee storage protein gene, hex 70a, expressed in developing gonads and nutritionally regulated in adult fat body. J. Insect Physiol. 54, 867–877

    Article  PubMed  CAS  Google Scholar 

  • Martins, J.R., Nunes, F.M.F., Cristino, A.S., Simoes, Z.P., Bitondi, M.M.G. (2010) The four hexamerin genes in the honey bee: structure, molecular evolution and function deduced from expression patterns in queens, workers and drones. BMC Mol. Biol. 11, 23

    Article  PubMed  Google Scholar 

  • Martins, J.R., Anhezini, L., Dallacqua, R.P., Simoes, Z.L.P., Bitondi, M.M.G. (2011) A honey bee hexamerin, HEX 70a, is likely to play an intranuclear role in developing and mature ovarioles and testioles. PLoS One 6, e29006

    Article  PubMed  CAS  Google Scholar 

  • Masova, A., Sanda, M., Jiracek, J., Selicharova, I. (2010) Changes in the proteomes of the hemocytes and fat bodies of the flesh fly Sarcophaga bullata larvae after infection by Escherichia coli. Proteome Sci. 8, 1

    Article  PubMed  Google Scholar 

  • Pei, D.H., Zhu, J.G. (2004) Mechanism of action S-ribosylhomocysteinase (LuxS). Curr. Opin. Chem. Biol. 8, 492–497

    Article  PubMed  CAS  Google Scholar 

  • Peiren, N., de Graaf, D.C., Vanrobaeys, F., Danneels, E.L., Devreese, B., Van Beeumen, J., Jacobs, F.J. (2008) Proteomic analysis of the honey bee worker venom gland focusing on the mechanisms of protection against tissue damage. Toxicon 52, 72–83

    Article  PubMed  CAS  Google Scholar 

  • Piulachs, M.D., Guidugli, K.R., Barchuk, A.R., Cruz, J., Simoes, Z.L.P., Belles, X. (2003) The vitellogenin of the honey bee, Apis mellifera: structural analysis of the cDNA and expression studies. Insect Biochem. Mol. Biol. 33, 459–465

    Article  PubMed  CAS  Google Scholar 

  • Randolt, K., Gimple, O., Geissendorfer, J., Reinders, J., Prusko, C., Mueller, M.J., Albert, S., Tautz, J., Beier, H. (2008) Immune-related proteins induced in the hemolymph after aseptic and septic injury differ in honey bee worker larvae and adults. Arch. Insect Biochem. Physiol. 69, 155–167

    Article  PubMed  CAS  Google Scholar 

  • Robbs, S.L., Ryan, R.O., Schmidt, J.O., Keim, P.S., Law, J.H. (1985) Lipophorin of the larval honeybee, Apis mellifera L. J. Lipid Res. 26, 241–247

    PubMed  CAS  Google Scholar 

  • Schmid, M.R., Brockmann, A., Pirk, C.W.W., Stanley, D.W., Tautz, J. (2008) Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase-based immunity. J. Insect Physiol. 54, 439–444

    Article  PubMed  CAS  Google Scholar 

  • Schwab, M.E. (2010) Functions of Nogo proteins and their receptors in the nervous system. Nat. Rev. Neurosci. 11, 799–811

    Article  PubMed  CAS  Google Scholar 

  • Seehuus, S.C., Norberg, K., Gimsa, U., Krekling, T., Amdam, G.V. (2006) Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc. Natl. Acad. Sci. USA 103, 962–967

    Article  PubMed  CAS  Google Scholar 

  • Singh, S.P., Coronella, J.A., Benes, H., Cochrane, B.J., Zimniak, P. (2001) Catalytic function of Drosophila melanogaster glutathione S-transferase DmGSTS1-1 (GST-2) in conjugation of lipid peroxidation end products. Eur. J. Biochem. 268, 2912–2923

    Article  PubMed  CAS  Google Scholar 

  • Tanji, T., Ip, Y.T. (2005) Regulators of the Toll and Imd pathways in the Drosophila innate immune response. Trends Immunol. 26, 193–198

    Article  PubMed  CAS  Google Scholar 

  • Thompson, S.N. (2003) Trehalose—the insect ‘blood’ sugar. Adv. Insect Physiol. 31, 205–285

    Article  CAS  Google Scholar 

  • Tufail, M., Takeda, M. (2002) Vitellogenin of the cockroach, Leucophaea maderae: nucleotide sequence, structure and analysis of processing in the fat body and oocytes. Insect Biochem. Mol. Biol. 32, 1469–1476

    Article  PubMed  CAS  Google Scholar 

  • Tufail, M., Takeda, M. (2008) Molecular characteristics of insect vitellogenins. J. Insect Physiol. 54, 1447–1458

    Article  PubMed  CAS  Google Scholar 

  • Tufail, M., Hatakeyama, M., Takeda, M. (2001) Molecular evidence for two vitellogenin genes and processing of vitellogenins in the American cockroach, Periplaneta americana. Arch. Insect Biochem. Physiol. 48, 72–80

    Article  PubMed  CAS  Google Scholar 

  • van Dooremalen, C., Gerritsen, L., Cornelissen, B., van der Steen, J.J.M., van Langevelde, F., Blacquiere, T. (2012) Winter survival of individual honey bees and honey bee colonies depends on level of Varroa destructor infestation. PLoS One 7, e36285

    Article  PubMed  Google Scholar 

  • Weirich, G.F., Collins, A.M., Williams, V.P. (2002) Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie 33, 3–14

    Article  CAS  Google Scholar 

  • Wheeler, D.E., Kawooya, J.K. (1990) Purification and characterization of honey bee vitellogenin. Arch. Insect. Biochem. Physiol. 14, 253–267

    Article  PubMed  CAS  Google Scholar 

  • Williams, G.R., Tarpy, D.R., van Engelsdorp, D., Chauzat, M.P., Cox-Foster, D.L., Delaplane, K.S., Neumann, P., Pettis, J.S., Rogers, R.E.L., Shutler, D. (2010) Colony Collapse Disorder in context. Bioessays 32, 845–846

    Article  PubMed  Google Scholar 

  • Zhang, S.C., Wang, S.H., Li, H.Y., Li, L. (2011) Vitellogenin, a multivalent sensor and an antimicrobial effector. Int. J. Biochem. Cell Biol. 43, 303–305

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by a project of the Ministry of Education, Youth and Sports of the Czech Republic (http://www.msmt.cz), project no. OC10016 (Prevention of Honeybee Colony Losses). The authors thank Veronika Souralova for the photo documentation of hemolymph and Martin Markovic for valuable help. The authors would like to thank the anonymous reviewers and editor for their valuable comments and suggestions that have improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Erban.

Additional information

Manuscript editor: Klaus Hartfelder

Analyse protéomique par électrophorèse bi-dimensionnelle de l’hémolymphe des ouvrières d’hiver de l’abeille Apis mellifera

Apis mellifera / hémolymphe / vitellogénine / protéomique / longévité

Zweidimensionale Proteomanalyse der Hämolymphe von Winterbienen der Honigbiene Apis mellifera

Apis mellifera / Hämolymphe / Winterbiene / Vitellogenin / Proteomik / Lebensdauer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erban, T., Jedelsky, P.L. & Titera, D. Two-dimensional proteomic analysis of honeybee, Apis mellifera, winter worker hemolymph. Apidologie 44, 404–418 (2013). https://doi.org/10.1007/s13592-012-0190-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13592-012-0190-5

Keywords

Navigation