Apidologie

, Volume 44, Issue 3, pp 268–277 | Cite as

Ashes in the air: the effects of volcanic ash emissions on plant–pollinator relationships and possible consequences for apiculture

  • Andrés S. Martínez
  • Maité Masciocchi
  • José M Villacide
  • Guillermo Huerta
  • Luis Daneri
  • Axel Bruchhausen
  • Guillermo Rozas
  • Juan C. Corley
Original article

Abstract

Pollinator foraging performance could be altered by volcanic ash contaminated flowers, pollen, and nectar. We used the honeybee (Apis mellifera) as a model organism to understand the effects that volcanic ash could have on apiculture and establish some of the mechanisms through which it could affect plant–pollinator interactions. Three mechanisms were investigated: (1) interference with resource location, (2) interference with resource consumption, and (3) disturbing digestive processes. Results indicate that plant–pollinator relationships could be altered by volcanic ash. On the one hand, honeybees seem to recognize flowers covered in ashes only after an adaptation period (i.e., learning). On the other hand, there is no avoidance mechanism to prevent ingestion of contaminated food that ultimately reduces survival. Apiculture could be negatively affected due to this natural disturbance and plant–pollinating relationships could be especially vulnerable to ash emissions due to the high exposure of pollen and nectar bearing structures susceptible to contamination. Additionally, nectar feeders gut morphology (i.e., convoluted, thin with no resistance to abrasion) enables ash particles in contaminated food to obstruct and lacerate the gut increasing mortality risk.

Keyword

Apis mellifera disturbance pollinator volcanic ash volcanic complex Puyehue Cordon Caulle 

References

  1. Chittka, L., Thomson, J.D. (2001) Cognitive Ecology of Pollination. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. Edwards, J., Schwartz, L. (1981) Mount St. Helens ash: a natural insecticide. Can. J. Zool. 59, 714–715CrossRefGoogle Scholar
  3. Foster, D.R., Knight, D.H., Franklin, J.F. (1998) Landscape patterns and legacies resulting from large, infrequent forest disturbances. Ecosystems 1, 497–510CrossRefGoogle Scholar
  4. Gullan, P.J., Cranston, P.S. (2005) The Insects. An Outline Of Entomology. Blackwell, MaldenGoogle Scholar
  5. Hammer, M., Menzel, R. (1995) Learning and memory in the honeybee. J. Neurosci. 15, 1617–1630PubMedGoogle Scholar
  6. Hegland, S.J., Nielsen, A., Lázaro, A., Bjerknes, A.-L., Totland, Ø. (2009) How does climate warming affect plant–pollinator interactions? Ecol. Lett. 12, 184–195PubMedCrossRefGoogle Scholar
  7. Hrassnigg, N., Crailsheim, K. (1998) The influence of brood on the pollen consumption of worker bees. J. Insect Physiol. 44,393–404PubMedCrossRefGoogle Scholar
  8. Klein, M., Bernard, E.V., James, H.C., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Tscharntke, T. (2007) Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313CrossRefGoogle Scholar
  9. Kleinbaum, D.G., Klein, M. (2006) Survival analysis: a self-learning text. Biometrics 62, 590Google Scholar
  10. Klostermeyer, E. C., Corpus, L. D., Campbell, C.L. (1981) Population changes in arthropods in wheat following volcanic ash fall-out. Melanderia 37, 45–49Google Scholar
  11. Martínez, A.S., Farina, W.M. (2007) Honeybees modify gustatory responsiveness after receiving nectar from foragers within the hive. Behav. Ecol. Sociobiol. 62, 529–535CrossRefGoogle Scholar
  12. Masciocchi, M., Pereira, A.J., Lantschner, M.V., Corley, J.C. (2012) Of volcanoes and insects: the impact of the Puyehue-Cordon Caulle ash-fall on populations of invasive social wasps, Vespula spp. Ecol. Res. (in press)Google Scholar
  13. Menzel, R., Blakers, M.. (1976) Comparative Colour Receptors in the Bee Eye-Morphology and Spectral Sensitivity. J. Comp. Physiol. A 108, 11–33CrossRefGoogle Scholar
  14. Menzel, R., Greggers, U., Smith, A., Berger, S., Brandt, R., Brunke, S., Bundrock, G., Hülse, S., Plümpe, T., Schaupp, F., Schüttler, E., Stach, S., Stindt, J., Stollhoff, N.,Watzl, S. (2005) Honey bees navigate according to a map-like spatial memory. Proc. Nat. Acad. Sci. USA 102, 3040–3045PubMedCrossRefGoogle Scholar
  15. Ne’eman, G., Jürgens, A., Newstrom-Lloyd, L., Potts, SG., Dafni, A. (2010) A framework for comparing pollinator performance: effectiveness and efficiency. Biol. Rev. Cambridge Philos. Soc. 85, 435–51PubMedGoogle Scholar
  16. Ollerton, J., Winfree, R., Tarrant, S. (2011) How many flowering plants are pollinated by animals? (Hederson, D.R.(ed.). Oikos 120, 321–326CrossRefGoogle Scholar
  17. Potts, S.G., Vulliamy, B., Dafni, A., Ne’eman, G., O’Toole, C., Roberts, S., Willmer, P. (2003) Response of plant–pollinator communities to fire: changes in diversity, abundance and floral reward structure. Oikos 101, 103–112CrossRefGoogle Scholar
  18. Raguso, R., Willis, M. (2005) Synergy between visual and olfactory cues in nectar feeding by wild hawkmoths, Manduca sexta. Anim. Behav.69, 407–418CrossRefGoogle Scholar
  19. Ramírez, G.P., Martínez, A.S., Fernández, V.M., Corti Bielsa, G., Farina, W.M. (2010) The influence of gustatory and olfactory experiences on responsiveness to reward in the honeybee. PloS one 5, e13498PubMedCrossRefGoogle Scholar
  20. Robock, A. (2000) Volcanic eruptions and climate. Rev. Geophys. 38, 191–219CrossRefGoogle Scholar
  21. Rortais, A.R., Arnold, G.A., Halm, M.-P., Touffet-Briens, F. (2005) Modes of honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees. Apidologie 36, 71–83Google Scholar
  22. Shoji, S., Nanzyo, M., Dahlgren, R. (1993) Volcanic Ash Soils: Genesis, Properties and Utilization. Elsevier, LondonGoogle Scholar
  23. Simkin, T. (1993) Terrestrial volcanism in space and time. Annu. Rev. Earth Planet.Sci. 21, 427–452CrossRefGoogle Scholar
  24. Small, C., Naumann, T. (2001) The global distribution of human population and recent volcanism. Glob. Environ. Chang. Part B: Environ. Hazards 3, 93–109CrossRefGoogle Scholar
  25. Traveset, A., Richardson, D.M. (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol.& Evol. 21, 208–216CrossRefGoogle Scholar
  26. Waser, N.M. (1986) Flower constancy: definition, cause, and measurement. Am. Nat. 127, 593–603CrossRefGoogle Scholar
  27. Wille, A. & Fuentes, G. (1975) Efecto de la ceniza del Volcán: Irazú (Costa Rica) en algunos insectos. Rev. Biol. Trop 3, 165–175Google Scholar
  28. Wilson, T.M., Cole, J.W., Stewart, C., Cronin, S.J. & Johnston, D.M. (2010) Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile. Bull. Volcanol.73, 223–239CrossRefGoogle Scholar
  29. Woyke, J., Gabka, J. (2011) Effect of volcanic ash cloud over Poland on flight activity of honey bees. J. Apic. Sci. 55, 5–17Google Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2012

Authors and Affiliations

  • Andrés S. Martínez
    • 1
  • Maité Masciocchi
    • 1
  • José M Villacide
    • 1
  • Guillermo Huerta
    • 2
  • Luis Daneri
    • 2
  • Axel Bruchhausen
    • 3
  • Guillermo Rozas
    • 3
  • Juan C. Corley
    • 1
  1. 1.Grupo de Ecología de Poblaciones de InsectosINTA EEA BarilocheSan Carlos de BarilocheArgentina
  2. 2.INTA EEA BarilocheSan Carlos de BarilocheArgentina
  3. 3.Grupo de Fotónica & OptoelectrónicaInstituto Balseiro and Centro Atómico BarilocheSan Carlos de BarilocheArgentina

Personalised recommendations