, Volume 44, Issue 2, pp 163–172 | Cite as

Discovery and characterization of microsatellites for the solitary bee Colletes inaequalis using Sanger and 454 pyrosequencing

  • Margarita M. López-UribeEmail author
  • Christine K. Santiago
  • Steve M. Bogdanowicz
  • Bryan N. Danforth
Original article


The recent implementation of next-generation sequencing for the discovery of microsatellite markers has made this technology the most effective method for generating genetic markers in non-model organisms. Here, we report the de novo discovery of microsatellite markers for the solitary bee Colletes inaequalis using cloning/Sanger sequencing and direct 454 pyrosequencing from microsatellite-enriched genomic libraries. We identified and successfully multiplexed 18 highly variable microsatellite markers in 585 individuals. The number of alleles per locus ranged from 3 to 23, and the expected heterozygosity ranged from 0.056 to 0.912. These genetic markers will allow for the investigation of levels of inbreeding and fine-scale population structure in C. inaequalis. Our results contribute to the literature demonstrating that 454 sequencing is more time- and cost-efficient than cloning/Sanger sequencing at identifying a large number of genomic regions with microsatellite repeat motifs.


SSRs cloning next-generation sequencing Colletidae 



We would like to thank L. Duque, D. Dewey, J. Eitner, and J. Stitt for field assistance and A. Soro and two anonymous reviewers for comments on this manuscript. This work was supported by the Andrew W. Mellon Foundation at Cornell University (MMLU), the Sarah Bradley Fellowship (MMLU), and the Cornell Biology Research Fellowship Program (CKS). Additional funds were provided by National Science Foundation systematic grants (DEB-0814544 and DEB-0742998 to BND).


  1. Abdelkrim, J., Robertson, B., Stanton, J.-A., Gemmell, N. (2009) Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46, 185–192PubMedCrossRefGoogle Scholar
  2. Andrés, J.A., Bogdanowicz, S.M. (2011) Isolating microsatellite loci: looking back, looking ahead. In: Orgogozo, V., Rickman, M.V. (eds.) Molecular Methods for Evolutionary Genetics, pp. 211–232. Springer Protocols, SecaucusGoogle Scholar
  3. Augusto, S.C., Gonçalves, P.H.P., Francisco, F.O., Santiago, L.R., Françoso, E.A., Suzuki, K.M., Sofia, S.H., Simões, Z.L.P., Arias, M.C. (2011) Microsatellite loci for the carpenter bee Xylocopa frontalis (Apidae, Xylocopini). Conser. Genet. Resour. 4, 315–317CrossRefGoogle Scholar
  4. Azuma, N., Takahashi, J., KIidoro, M., Higashi, S. (2005) Isolation and characterization of microsatellite loci in the bee Ceratina flavipes. Mol. Ecol. Notes 5, 433–435CrossRefGoogle Scholar
  5. Batra, S.W.T. (1980) Ecology, behavior, pheromones, parasites and management of the sympatric vernal bees Colletes inaequalis, C. thoracicus and C. validus. J. Kans. Entomol. Soc. 53, 509–538Google Scholar
  6. Batra, S.W.T. (1995) Bees and pollination in our changing environment. Apidologie 26, 361–370CrossRefGoogle Scholar
  7. Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., Bonhomme, F. (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Montpellier (France): Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier IIGoogle Scholar
  8. Beveridge, M., Simmons, L.W. (2004) Microsatellite loci for Dawson's burrowing bee (Amegilla dawsoni) and their cross-utility in other Amegilla species. Mol. Ecol. Notes. 4, 379–381CrossRefGoogle Scholar
  9. Blair, M.W., McCouch, S.R. (1997) Microsatellite and sequence-tagged site markers diagnostic for the rice bacterial leaf blight resistance gene xa-5. Theor. Appl. Genet. 95, 174–184CrossRefGoogle Scholar
  10. Brownstein, M.J., Carpten, J.D., Smith, J.R. (1996) Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20, 1004–1010PubMedGoogle Scholar
  11. Danforth, B.N., Ji, S., Ballard, L.J. (2003) Gene flow and population structure in an oligolectic desert bee, Macrotera (Macroteropsis) portalis. J. Kans. Entomol. Soc. 76, 221–235Google Scholar
  12. Gardner, K.E., Ascher, J.S. (2006) Notes on the native bee pollinators in New York apple orchard. J. N. Y. Entomol. Soc. 114, 86–91CrossRefGoogle Scholar
  13. Hamilton, M.B., Pincus, E.L., Di Fiore, A., Fleischer, R.C. (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27, 500–504PubMedGoogle Scholar
  14. Huse, S.M., Huber, J.A., Morrison, H.G., Sogin, M.L., Welch, D.M. (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8, R143PubMedCrossRefGoogle Scholar
  15. Kapheim, K.M., Pollinger, J.P., Wcislo, W.T., Wayne, R.K. (2009) Characterization of 12 polymorphic microsatellite markers for a facultatively eusocial sweat bee (Megalopta genalis). Mol. Ecol. Resour. 9, 1527–1529PubMedCrossRefGoogle Scholar
  16. Kukuk, P.F., Forbes, S.H., Zahorchack, R., Riddle, A., Pilgrim, K. (2002) Highly polymorphic microsatellite markers developed for the social halictine bee Lasioglossum (Chilalictus) hemichalceum. Mol. Ecol. Notes 2, 529–530CrossRefGoogle Scholar
  17. Langer, P., Molbo, D., Keller, L. (2004) Polymorphic microsatellite loci in Allodapine bees for investigating the evolution of social behaviour. Mol. Ecol. Notes 4, 303–305CrossRefGoogle Scholar
  18. Li, Y.C., Korol, A.B., Fahima, T., Beiles, A., Nevo, E. (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol. Ecol. 11, 2453–2465PubMedCrossRefGoogle Scholar
  19. López-Uribe, M.M., Green, A.N., Ramírez, S.R., Bogdanowicz, S.M., Danforth, B.N. (2010) Isolation and cross-species characterization of polymorphic microsatellites for the orchid bee Eulaema meriana (Hymenoptera: Apidae: Euglossini). Conser. Genet. Resour. 1, 21–23Google Scholar
  20. Mikheyev, A.S., Vo, T., Wee, B., Singer, M.C., Parmesan, C. (2010) Rapid microsatellite isolation from a butterfly by de novo transcriptome sequencing: performance and a comparison with AFLP-derived distances. PLoS One 5, e11212PubMedCrossRefGoogle Scholar
  21. Mohra, C., Fellendorf, M., Segelbacher, G., Paxton, R.J. (2000) Dinucleotide microsatellite loci for Andrena vaga and other andrenid bees from non-enriched and CT-enriched libraries. Mol. Ecol. 9, 2189–2191PubMedCrossRefGoogle Scholar
  22. Neumann, K., Seidelmann, K. (2006) Microsatellites for the inference of population structures in the Red Mason bee Osmia rufa (Hymenoptera, Megachilidae). Apidologie 37, 75–83CrossRefGoogle Scholar
  23. Paxton, R.J., Thorén, P.A., Tengö, J., Estoup, A., Pamilo, P. (1996) Mating structure and nestmate relatedness in a communal bee, Andrena jacobi (Hymenoptera, Andrenidae), using microsatellites. Mol. Ecol. 5, 511–519PubMedCrossRefGoogle Scholar
  24. Paxton, R.J., Ayasse, M., Field, J., Soro, A. (2002) Complex sociogenetic organization and reproductive skew in a primitively eusocial sweat bee, Lasioglossum malachurum, as revealed by microsatellites. Mol. Ecol. 11, 2405–2416PubMedCrossRefGoogle Scholar
  25. Paxton, R.J., Zobel, M.U., Steiner, J., Zillikens, A. (2009) Microsatellite loci for Euglossa annectans (Hymenoptera: Apidae) and their variability in other orchid bees. Mol. Ecol. Resour. 9, 221–1223CrossRefGoogle Scholar
  26. Perry, J.C., Rowe, L. (2011) Rapid microsatellite development for water striders by next-generation sequencing. J. Hered. 102, 125–129PubMedCrossRefGoogle Scholar
  27. Santana, Q., Coetzee, M., Steenkamp, E., Mlonyeni, O., Hammond, G., Wingfield, M., Wingfield, B. (2009) Microsatellite discovery by deep sequencing of enriched genomic libraries. Biotechniques 46, 217–223PubMedCrossRefGoogle Scholar
  28. Schlötterer, C., Tautz, D. (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 20, 211–215PubMedCrossRefGoogle Scholar
  29. Schuelke, M. (2000) An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18, 233–234PubMedCrossRefGoogle Scholar
  30. Smit, A.F.A., Hubley, R., Green, P. (2010) RepeatMasker Open-3.0. Available from:
  31. Soro, A., Paxton, R.J. (2009) Characterization of 14 polymorphic microsatellite loci for the facultatively eusocial sweat bee Halictus rubicundus (Hymenoptera, Halictidae) and their variability in related species. Mol. Ecol. Resour. 9, 150–152PubMedCrossRefGoogle Scholar
  32. Souza, R.O., Cervini, M., Del Lama, M.A., Paxton, R.J. (2007) Microsatellite loci for euglossine bees (Hymenoptera: Apidae). Mol. Ecol. Notes 7, 1352–1356CrossRefGoogle Scholar
  33. Tautz, D. (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 17, 6463–6471PubMedCrossRefGoogle Scholar
  34. Trombetti, G.A., Bonnal, R.J.P., Rizzi, E., De Bellis, G., Milanesi, L. (2007) Data handling strategies for high throughput pyrosequencers. BMC Bioinforma. 8, S22CrossRefGoogle Scholar
  35. Väli, U., Einarsson, A., Waits, L., Ellegren, H. (2008) To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations? Mol. Ecol. 17, 3808–3817PubMedCrossRefGoogle Scholar
  36. Vereecken, N.J. (2008) Pollinator-mediated selection, reproductive isolation and floral evolution in Ophrys orchids. Proc. Neth. Entomol. Soc. Meet. 19, 9–21Google Scholar
  37. Weber, J.L., Polymeropoulos, M.H., May, P.E., Kwitek, A.E., Xiao, H., McPherson, J.D., Wasmuth, J.J. (1991) Mapping of human chromosome 5 microsatellite DNA polymorphisms. Genomics 11, 695–700PubMedCrossRefGoogle Scholar
  38. Winfree, R., Williams, N.M., Dushoff, J., Kremen, C. (2007) Native bees provide insurance against ongoing honey bee losses. Ecol. Lett. 10, 1105–1113PubMedCrossRefGoogle Scholar
  39. Zalapa, J.E., Cuevas, H., Zhu, H., Steffan, S., Senalik, D., Zeldin, E., McCown, B., Harbut, R., Simon, P. (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am. J. Bot. 99, 193–208PubMedCrossRefGoogle Scholar
  40. Zane, L., Bargelloni, L., Patarnello, T. (2002) Strategies for microsatellite isolation: a review. Mol. Ecol. 11, 1–16PubMedCrossRefGoogle Scholar
  41. Zayed, A. (2006) Characterization of microsatellite loci from the solitary sweat bees Lasioglossum leucozonium and Lasioglossum oenotherae (Hymenoptera, Halictidae). Mol. Ecol. Notes 6, 1154–1156CrossRefGoogle Scholar
  42. Zayed, A. (2009) Bee genetics and conservation. Apidologie 40, 237–262CrossRefGoogle Scholar
  43. Zayed, A., Constantin, Ş.A., Packer, L. (2007) Successful biological invasion despite a severe genetic load. PLoS One 9, e868CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France 2012

Authors and Affiliations

  • Margarita M. López-Uribe
    • 1
    Email author
  • Christine K. Santiago
    • 1
  • Steve M. Bogdanowicz
    • 2
  • Bryan N. Danforth
    • 1
  1. 1.Department of EntomologyCornell UniversityIthacaUSA
  2. 2.Evolutionary Genetics Core Facilities, Department of Ecology and Evolutionary BiologyCornell UniversityIthacaUSA

Personalised recommendations