Skip to main content
Log in

Identification and antioxidant characterisation of thioredoxin-like1 from Apis cerana cerana

  • Original article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

Thioredoxins (Trxs) play a crucial role in maintaining redox homeostasis and protecting organisms against toxic reactive oxygen species. Compared with the well-studied Trxs in Mammalia, little is reported in insects. In this study, we isolated a Trx-like1 gene from Apis cerana cerana (AccTrx-like1), a single copy gene, and characterised its antioxidant activity. Quantitative real-time PCR and immunohistochemical assays revealed that AccTrx-like1 was most highly expressed in larvae and was localised primarily in the epidermis and brain tissue of adults. Expression analyses indicated that AccTrx-like1 expression is induced by both H2O2 and low temperatures. Moreover, catalase activity and malondialdehyde levels were inversely related to the expression levels of AccTrx-like1 in honeybee injected with H2O2 at 30 min. Taken together, these results suggest that AccTrx-like1 is an important antioxidant gene that is likely to play a role in preventing oxidative stress in A. cerana cerana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • Ament, S.A., Corona, M., Pollock, H.S., Robinson, G.E. (2008) Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc. Natl. Acad. Sci. USA 105, 4226–4231

    Article  PubMed  CAS  Google Scholar 

  • Breusegem, F.V., Vranová, E., Dat, J.F., Inzé, D. (2001) The role of active oxygen species in plant signal transduction. Plant Sci. 161, 405–414

    Article  Google Scholar 

  • Carvalho, A.P., Fernandes, P.A., Ramos, M.J. (2006) Similarities and differences in the thioredoxin superfamily. Prog. Biophys. Mol. Biol. 91, 229–248

    Article  PubMed  CAS  Google Scholar 

  • Corona, M., Robinson, G.E. (2006) Genes of the antioxidant system of the honey bee: annotation and phylogeny. Insect Mol. Biol. 15, 687–701

    Article  PubMed  CAS  Google Scholar 

  • Del, R.D., Stewart, A.J., Pelleqrini, N. (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 15, 316–328

    Article  Google Scholar 

  • Ekker, S.C., von Kessler, D.P., Beachy, P.A. (1992) Differential DNA sequence recognition is a determinant of specificity in homeotic gene action. EMBO J. 11, 4059–4072

    PubMed  CAS  Google Scholar 

  • Evans, J.D., Aronstein, K., Chen, Y.P., Hetru, C., Imtru, J.L., Jiang, H., Kanost, M., Thompson, G.J., Zou, Z., Hultmark, D. (2006) Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 15, 645–656

    Article  PubMed  CAS  Google Scholar 

  • Fernandes, M., Xiao, H., Lis, J.T. (1994) Fine structure analyses of the Drosophila and Saccharomyces heat shock factor–heat shock element interactions. Nucleic Acids Res. 22, 167–173

    Article  PubMed  CAS  Google Scholar 

  • Finkel, T. (2003) Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 15, 247–254

    Article  PubMed  CAS  Google Scholar 

  • Finkel, T., Holbrook, N.J. (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247

    Article  PubMed  CAS  Google Scholar 

  • Fridovich, I. (1978) The biology of oxygen radicals. Science 201, 875–880

    Article  PubMed  CAS  Google Scholar 

  • Gogos, J.A., Hsu, T., Bolton, J., Kafatos, F.C. (1992) Sequence discrimination by alternatively spliced isoforms of a DNA binding zinc finger domain. Science 257, 1951–1954

    Article  PubMed  CAS  Google Scholar 

  • Gromer, S., Urig, S., Becker, K. (2004) The thioredoxin system—from science to clinic. Med. Res. Rev. 24, 40–89

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B., Gutteridge, J.M.C. (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219, 1–14

    PubMed  CAS  Google Scholar 

  • Harrison, J.F., Fewell, J.H. (2002) Environmental and genetic influences on flight metabolic rate in the honey bee, Apis mellifera. Comp. Biochem. Physiol. A Mol. Integr. 133, 323–333

    Article  Google Scholar 

  • Hasnain, S.E., Taneja, T.K., Sah, N.K., Mohan, M., Pathak, N., Sahdev, S., Athar, M., Totey, S.M., Begum, R. (1999) In vitro cultured Spodoptera frugiperda insect cells: model for oxidative stress-induced apoptosis. J. Biosci. 24, 13–19

    Article  CAS  Google Scholar 

  • Ikemoto, T. (2005) Intrinsic optimum temperature for development of insects and mites. Environ. Entomol. 34, 1377–1387

    Article  Google Scholar 

  • Jeffrey, P.L., Capes-Davis, A., Dunn, J.M., Tolhurst, O., Seeto, G., Hannan, A.J., Lin, S.L. (2000) CROC-4: a novel brain specific transcriptional activator of c-fos expressed from proliferation through to maturation of multiple neuronal cell types. Mol. Cell. Neurosci. 16, 185–196

    Article  PubMed  CAS  Google Scholar 

  • Jiménez, A., Pelto-Huikko, M., Gustafsson, J.A., Miranda-Vizuete, A. (2006) Characterization of human thioredoxin-like-1: potential involvement in the cellular response against glucose deprivation. FEBS Lett. 580, 960–967

    Article  PubMed  Google Scholar 

  • Jones, W.D., Nquyen, T.A., Kloss, B., Lee, K.J., Vosshall, L.B. (2005) Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr. Biol. 15, R119–R121

    Article  PubMed  CAS  Google Scholar 

  • Kerr, W.E., Laldlaw, H.H. (1956) General genetics of bees. Adv. Genet. 8, 109–153

    Article  Google Scholar 

  • Kim, B.Y., Hiu, W.L., Lee, K.S., Wan, H., Yoon, H.J., Gui, Z.Z., Chen, S., Jin, B.R. (2011) Molecular cloning and oxidative stress response of a sigma-class glutathione S-transferase of the bumblebee Bombus ignites. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 158, 83–89

    Article  PubMed  Google Scholar 

  • Kleinhenz, M., Bujok, B., Fuchs, S., Tautz, J. (2003) Hot bees in empty broodnest cells: heating from within. J. Exp. Biol. 206, 4217–4231

    Article  PubMed  Google Scholar 

  • Laurent, T.C., Moore, E.C., Reichard, P. (1964) Enzymatic synthesis of deoxyribonucleotides. J. Biol. Chem. 239, 3436–3444

    PubMed  CAS  Google Scholar 

  • Lee, K.K., Murakawa, M., Takahashi, S., Tsubuki, S., Kawashima, S., Sakamaki, K., Yonehara, S. (1998) Purification, molecular cloning, and characterization of TRP32, a novel thioredoxin-related mammalian protein of 32 kDa. J. Biol. Chem. 273, 19160–19166

    Article  PubMed  CAS  Google Scholar 

  • Livak, K.J., Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta C (C)) method. Methods 25, 402–408

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Martinez, G., Elnitsky, M.A., Benoit, J.B., Lee Jr., R.E., Denlinger, D.L. (2008) High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochem. Mol. Biol. 38, 796–804

    Article  PubMed  CAS  Google Scholar 

  • Marionnet, C., Bernerd, F., Dumas, A., Verrecchia, F., Mollier, K., Compan, D., Bernard, B., Lahfa, M., Leclaire, J., Medaisko, C., Mehul, B., Seité, S., Mauviel, A., Dubertret, L. (2003) Modulation of gene expression induced in human epidermis by environmental stress in vivo. J. Invest. Dermatol. 121, 1447–1458

    Article  PubMed  CAS  Google Scholar 

  • McMullan, J.B., Brown, M.J. (2006) Brood-cell size dose not influence the susceptibility of honey bees (Apis mellifera) to infestation by tracheal mites (Acarapis woodi). Exp. Appl. Acarol. 39, 273–280

    Article  PubMed  Google Scholar 

  • Michaud, M.R., Denlinger, D.L. (2004) Molecular modalities of insect cold survival: current understanding and future trends. Int. Congr. Ser. 1275, 32–46

    Article  Google Scholar 

  • Miranda-Vizuete, A., Ljung, J., Damdimopoulos, A.E., Gustafsson, J.A., Oko, R., Pelto-Huikko, M., Spyrou, G. (2001) Characterization of Sptrx, a novel member of the thioredoxin family, specifically expressed in human spermatozoa. J. Biol. Chem. 276, 31567–31574

    Article  PubMed  CAS  Google Scholar 

  • Rival, T., Soustelle, L., Strambi, C., Besson, M.T., Iche, M., Birman, S. (2004) Decreasing glutamate buffering capacity triggers oxidative stress and neuropil degeneration in Drosophila brain. Curr. Biol. 17, 599–605

    Article  Google Scholar 

  • Robinson, G.E. (1992) Regulation of division of labor in insect societies. Annu. Rev. Entomol. 37, 637–665

    Article  PubMed  CAS  Google Scholar 

  • Rothenbuhler, W.C., Gowen, J.W., Park, O.W. (1952) Androgenesis with zygogenesis in gynandromorphic honeybees (Apis mellifera L.). Science 115, 637–638

    Article  PubMed  CAS  Google Scholar 

  • Schwarze, S.R., Weindruch, R., Aiken, J.M. (1998) Oxidative stress and aging reduce COX I RNA and cytochrome oxidase activity in Drosophila. Free Radic. Biol. Med. 25, 740–747

    Article  PubMed  CAS  Google Scholar 

  • Spyrou, G., Enmark, E., Miranda-Vizuete, A., Gustafsson, J. (1997) Cloning and expression of a novel mammalian thioredoxin. J. Biol. Chem. 272, 2936–2941

    Article  PubMed  CAS  Google Scholar 

  • Stanojević, D., Hoey, T., Levine, M. (1989) Sequence specific DNA-binding activities of the gap proteins encoded by hunchback and Krüppel in Drosophila. Nature 341, 331–335

    Article  PubMed  Google Scholar 

  • Tanaka, T., Hosoi, F., Yamaguchi-Iwai, Y., Nakamura, H., Masutani, H., Ueda, S., Nishiyama, A., Takeda, S., Wada, H., Spyrou, G., Yodoi, J. (2002) Thioredoxin-2(TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J. 21, 1695–1703

    Article  PubMed  CAS  Google Scholar 

  • Tsuda, M., Ootaka, R., Ohkura, C., Kishita, Y., Seong, K.H., Matsuo, T., Aigaki, T. (2010) Loss of Trx-2 enhances oxidative stress-dependent phenotypes in Drosophila. FEBS Lett. 584, 3398–3401

    Article  PubMed  CAS  Google Scholar 

  • von Kalm, L., Crossgrove, K., Von Seggern, D., Guild, G.M., Beckendorf, S.K. (1994) The Broad-Complex directly controls a tissue-specific response to the steroid hormone ecdysone at the onset of Drosophila metamorphosis. EMBO J. 13, 3505–3516

    Google Scholar 

  • Wang, M., Kang, M., Guo, X., Xu, B. (2010) Identification and characterization of two phospholipids hydroperoxide glutathione peroxidase genes from Apis cerana cerana. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 152, 75–83

    Article  PubMed  CAS  Google Scholar 

  • Widder, J.D., Fraccarollo, D., Galuppo, P., Hansen, J.M., Jones, D.P., Ertl, G., Bauersachs, J. (2009) Attenuation of angiotensin II-induced vascular dysfunction and hypertension by overexpression of thioredoxin 2. Hypertension 54, 338–344

    Article  PubMed  CAS  Google Scholar 

  • Xu, P., Shi, M., Chen, X.X. (2009) Antimicrobial peptide evolution in the Asiatic honey bee Apis cerana. PLoS One 4, e4239

    Article  PubMed  Google Scholar 

  • Yang, G.B. (2005) Harm of introducing the western honeybee Apis mellifera L. to the Chinese honeybee Apis cerana F. and its ecological impact. Acta. Entomol. Sin. 3, 401–406

    Google Scholar 

  • Yang, L.H., Huang, H., Wang, J.J. (2010) Antioxidant responses of citrus red mite, Panonychus citri (McGregor) (Acari: Tetranychidae), exposed to thermal stress. J. Insect Physiol. 56, 1871–1876

    Article  PubMed  CAS  Google Scholar 

  • Yocum, G.D., Zdárek, J., Joplin, J.H., Lee Jr., R.E., Smith, C.D., Manter, K.D., Denlinger, D.L. (1994) Alteration of the eclosion rhythm and eclosion behavior in the flesh fly, Sarcophaga crassipalpis, by low and high temperature stress. J. Insect Physiol. 40, 13–21

    Article  Google Scholar 

  • Zhang, Y., Bao, R., Zhou, C.Z., Chen, Y. (2008) Expression, purification, crystallization and preliminary X-ray diffraction analysis of thioredoxin Trx1 from Saccharomyces cerevisiae. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64, 323–325

    Article  PubMed  Google Scholar 

  • Zhou, F., Gomi, M., Fujimoto, M., Hayase, M., Marumo, T., Masutani, H., Yodoi, J., Hashimoto, N., Nozaki, K., Takagi, Y. (2009) Attenuation of neuronal degeneration in thioredoxin-1 overexpressing mice after mild focal ischemia. Brain Res. 1272, 62–70

    Article  PubMed  CAS  Google Scholar 

  • Ziegler, I. (1961) Genetic aspects of ommochrome and pterin pigments. Adv. Genet. 10, 349–403

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation (No. 31172275) of China, China Agriculture Research System (No. CARS-45) and National Department Public Benefit Research Foundation (No. 200903006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingqi Guo or Baohua Xu.

Additional information

Manuscript editor: Klaus Hartfelder

Identification de la TXNL1 d’ Apis cerana cerana et caractérisation de son activité anti-oxydante.

Apidae / PCR quantitative en temps réel / stress oxydatif / thiorédoxine-like protéine1

Identifzierung des thioredoxin-like1 Gens von Apis cerana cerana und Charakterisierung seiner antioxidanten Wirkung.

Trx-like1 / Apis cerana cerana / quantitative Real-time PCR / oxidativer Stress

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, W., Kang, M., Liu, X. et al. Identification and antioxidant characterisation of thioredoxin-like1 from Apis cerana cerana . Apidologie 43, 737–752 (2012). https://doi.org/10.1007/s13592-012-0148-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13592-012-0148-7

Keywords

Navigation