Apidologie

, Volume 43, Issue 3, pp 334–347 | Cite as

Plant essential oils and formamidines as insecticides/acaricides: what are the molecular targets?

Review article

Abstract

The parasitic mite Varroa destructor is the main cause of the severe reduction in beekeeping during the last few decades. Therefore, efforts have been made to develop chemical treatments against the parasite. In the past, synthetic products were preferentially used to combat Varroa mites. Nowadays, mainly plant essential oils and organic acids are applied because they are safer and impose less unfavorable effects on the environment. Essential oils contain mixtures of mostly volatile and odorous terpenoid constituents. The molecular targets of these substances are tyramine and/or octopamine receptors that control and modulate vital functions ranging from metabolism to behavior. Disturbing the native function of these receptors in the mite results in deleterious effects in this parasite. This overview considers not only tyramine and octopamine receptors but also other potential targets of essential oils including ionotropic GABAA receptors, TRP type ion channels, and acetylcholinesterase.

Keywords

GABA G protein-coupled receptor octopamine thymol tyramine 

References

  1. Anthony, J.P., Fyfe, L., Smith, H. (2005) Plant active components—a resource for antiparasitic agents? Trends Parasitol. 21, 462–468PubMedCrossRefGoogle Scholar
  2. Baxter, G.D., Barker, S.C. (1999) Isolation of a cDNA for an octopamine-like, G-protein coupled receptor from the cattle tick, Boophilus microplus. Insect Biochem. Mol. Biol. 29, 461–467PubMedCrossRefGoogle Scholar
  3. Beggs, K.T., Hamilton, I.S., Kurshan, P.T., Mustard, J.A., Mercer, A.R. (2005) Characterization of a D2-like dopamine receptor (AmDOP3) in honey bee, Apis mellifera. Insect Biochem. Mol. Biol. 35, 873–882PubMedCrossRefGoogle Scholar
  4. Bischof, L.J., Enan, E.E. (2004) Cloning, expression and functional analysis of an octopamine receptor from Periplaneta americana. Insect Biochem. Mol. Biol. 34, 511–521PubMedCrossRefGoogle Scholar
  5. Blenau, W., Baumann, A. (2001) Molecular and pharmacological properties of insect biogenic amine receptors: lessons from Drosophila melanogaster and Apis mellifera. Arch. Insect Biochem. Physiol. 48, 13–38PubMedCrossRefGoogle Scholar
  6. Blenau, W., Baumann, A. (2003) Aminergic signal transduction in invertebrates: focus on tyramine and octopamine receptors. Recent Res Dev Neurochem 6, 225–240Google Scholar
  7. Blenau, W., Thamm, M. (2011) Distribution of serotonin (5-HT) and its receptors in the insect brain with focus on the mushroom bodies: lessons from Drosophila melanogaster and Apis mellifera. Arthropod Struct. 40, 381–394CrossRefGoogle Scholar
  8. Blenau, W., Erber, J., Baumann, A. (1998) Characterization of a dopamine D1 receptor from Apis mellifera: cloning, functional expression, pharmacology, and mRNA localization in the brain. J. Neurochem. 70, 15–23PubMedCrossRefGoogle Scholar
  9. Blenau, W., Balfanz, S., Baumann, A. (2000) Amtyr1: characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor. J. Neurochem. 74, 900–908PubMedCrossRefGoogle Scholar
  10. Bloomquist, J.R. (1996) Ion channels as targets for insecticides. Annu. Rev. Entomol. 41, 163–190PubMedCrossRefGoogle Scholar
  11. Brody, T., Cravchik, A. (2000) Drosophila melanogaster G protein-coupled receptors. J. Cell Biol. 150, F83–F88PubMedCrossRefGoogle Scholar
  12. Buckingham, S.D., Biggin, P.C., Sattelle, B.M., Brown, L.A., Sattelle, D.B. (2005) Insect GABA receptors: splicing, editing, and targeting by antiparasitics and insecticides. Mol. Pharmacol. 68, 942–951PubMedCrossRefGoogle Scholar
  13. Calderone, N.W. (2010) Evaluation of Mite-Away-II for fall control of Varroa destructor (Acari: Varroidae) in colonies of the honey bee Apis mellifera (Hymenoptera: Apidae) in the northeastern USA. Exp. Appl. Acarol. 50, 123–132PubMedCrossRefGoogle Scholar
  14. Calderone, N.W., Spivak, M. (1995) Plant extracts for control of the parasitic mite Varroa jacobsoni (Acari: Varroidae) in colonies of the western honey bee (Hymenoptera, Apidae). J. Econ. Entomol. 88, 1211–1215Google Scholar
  15. Chappell, J. (1995) Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 521–547CrossRefGoogle Scholar
  16. Chen, A., Holmes, S.P., Pietrantonio, P.V. (2004) Molecular cloning and functional expression of a serotonin receptor from the Southern cattle tick, Boophilus microplus (Acari: Ixodidae). Insect. Mol. Biol. 13, 45–54PubMedCrossRefGoogle Scholar
  17. Chen, A.C., He, H., Davey, R.B. (2007) Mutations in a putative octopamine receptor gene in amitraz-resistant cattle ticks. Vet. Parasitol. 148, 379–383PubMedCrossRefGoogle Scholar
  18. Cooley, L., Kelley, R., Spradling, A. (1988) Insertional mutagenesis of the Drosophila genome with single P elements. Science 239, 1121–1128PubMedCrossRefGoogle Scholar
  19. Downer, R.G.H., Gole, J.W.D., Orr, G.L. (1985) Interaction of formamidines with octopamine-, dopamine-, and 5-hydroxytryptamine-sensitive adenylate cyclase in the nerve cord of Periplaneta americana. Pestic. Sci. 16, 472–478CrossRefGoogle Scholar
  20. Dudai, Y., Buxbaum, J., Corfas, G., Ofarim, M. (1987) Formamidines interact with Drosophila receptors, alter the flies’ behavior and reduce their learning ability. J. Comp. Physiol. A 161, 739–746CrossRefGoogle Scholar
  21. Elzen, P.J., Baxter, J.R., Spivak, M., Wilson, W.T. (2000) Control of Varroa jacobsoni Oud. resistant to fluvalinate and amitraz using coumaphos. Apidologie 31, 437–441CrossRefGoogle Scholar
  22. Enan, E. (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 130, 325–337PubMedCrossRefGoogle Scholar
  23. Enan, E.E. (2005a) Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Insect Biochem. Mol. Biol. 35, 309–321PubMedCrossRefGoogle Scholar
  24. Enan, E.E. (2005b) Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Arch. Insect Biochem. Physiol. 59, 161–171PubMedCrossRefGoogle Scholar
  25. Evans, P.D., Gee, J.D. (1980) Action of formamidine pesticides on octopamine receptors. Nature 287, 60–62PubMedCrossRefGoogle Scholar
  26. Evans, P.D., Maqueira, B. (2005) Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invert. Neurosci. 5, 111–118PubMedCrossRefGoogle Scholar
  27. Floris, I., Cabras, P., Garau, V.L., Minelli, E.V., Satta, A., Troullier, J. (2001) Persistence and effectiveness of pyrethroids in plastic strips against Varroa jacobsoni (Acari: Varroidae) and mite resistance in a Mediterranean area. J. Econ. Entomol. 94, 806–810PubMedCrossRefGoogle Scholar
  28. Floris, I., Satta, A., Cabras, P., Garau, V.L., Angioni, A. (2004) Comparison between two thymol formulations in the control of Varroa destructor: effectiveness, persistence, and residues. J. Econ. Entomol. 97, 187–191PubMedCrossRefGoogle Scholar
  29. Genersch, E., Aubert, M. (2010) Emerging and re-emerging viruses of the honey bee (Apis mellifera L.). Vet. Res. 41, 54PubMedCrossRefGoogle Scholar
  30. Ghasemi, V., Moharramipour, S., Tahmasbi, G. (2011) Biological activity of some plant essential oils against Varroa destructor (Acari: Varroidae), an ectoparasitic mite of Apis mellifera (Hymenoptera: Apidae). Exp. Appl. Acarol. 55, 147–154PubMedCrossRefGoogle Scholar
  31. Gole, J.W.D., Orr, G.L., Downer, R.G.H. (1983) Interaction of formamidines with octopamine-sensitive adenylate cyclase receptor in the nerve cord of Periplaneta americana L. Life Sci. 32, 2939–2947PubMedCrossRefGoogle Scholar
  32. Grohmann, L., Blenau, W., Erber, J., Ebert, P.R., Strünker, T., Baumann, A. (2003) Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain. J. Neurochem. 86, 725–735PubMedCrossRefGoogle Scholar
  33. Grundy, D.L., Still, C.C. (1985) Inhibition of acetylcholinesterases by pulegone-1,2-epoxide. Pestic. Biochem. Physiol. 23, 383–388CrossRefGoogle Scholar
  34. Guzman-Novoa, E., Eccles, L., Calvete, Y., McGowan, J., Kelly, P.G., Correa, A. (2010) Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada. Apidologie 41, 443–450CrossRefGoogle Scholar
  35. Hauser, F., Cazzamali, G., Williamson, M., Blenau, W., Grimmelikhuijzen, C.J.P. (2006) A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog. Neurobiol. 80, 1–19PubMedCrossRefGoogle Scholar
  36. Hauser, F., Cazzamali, G., Williamson, M., Park, Y., Li, B., Tanaka, Y., Predel, R., Neupert, S., Schachtner, J., Verleyen, P., Grimmelikhuijzen, C.J. (2008) A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Front. Neuroendocrinol. 29, 142–165PubMedCrossRefGoogle Scholar
  37. Hill, C.A., Fox, A.N., Pitts, R.J., Kent, L.B., Tan, P.L., Chrystal, M.A., Cravchik, A., Collins, F.H., Robertson, H.M., Zwiebel, L.J. (2002) G protein-coupled receptors in Anopheles gambiae. Science 298, 176–178PubMedCrossRefGoogle Scholar
  38. Hirashima, A., Huang, H. (2008) Homology modeling, agonist binding site identification, and docking in octopamine receptor of Periplaneta americana. Comput. Biol. Chem. 32, 185–190PubMedCrossRefGoogle Scholar
  39. Hiripi, L., Juhos, S., Downer, R.G. (1994) Characterization of tyramine and octopamine receptors in the insect (Locusta migratoria migratorioides) brain. Brain Res. 633, 119–126PubMedCrossRefGoogle Scholar
  40. Hollingworth, R.M. (1976) Chemistry, biological activity, and uses of formamidine pesticides. Environ. Health Perspect. 14, 57–69PubMedCrossRefGoogle Scholar
  41. Hollingworth, R.M., Murdock, L.L. (1980) Formamidine pesticides: octopamine-like actions in a firefly. Science 208, 74–76PubMedCrossRefGoogle Scholar
  42. Holstein, S.A., Hohl, R.J. (2004) Isoprenoids: remarkable diversity of form and function. Lipids 39, 293–309PubMedCrossRefGoogle Scholar
  43. Hoppe, H. (1990) Vergleichende Untersuchungen zur Biotechnischen Bekämpfung der Varroatose. Dissertation, Justus-Liebig-Universität GiessenGoogle Scholar
  44. Houghton, P.J., Ren, Y., Howes, M.J. (2006) Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep. 23, 181–199PubMedCrossRefGoogle Scholar
  45. Huang, J., Hamasaki, T., Ozoe, F., Ohta, H., Enomoto, K., Kataoka, H., Sawa, Y., Hirota, A., Ozoe, Y. (2007) Identification of critical structural determinants responsible for octopamine binding to the α-adrenergic-like Bombyx mori octopamine receptor. Biochemistry 46, 5896–5903PubMedCrossRefGoogle Scholar
  46. Humphries, M.A., Mustard, J.A., Hunter, S.J., Mercer, A., Ward, V., Ebert, P.R. (2003) Invertebrate D2 type dopamine receptor exhibits age-based plasticity of expression in the mushroom bodies of the honeybee brain. J. Neurobiol. 55, 315–330PubMedCrossRefGoogle Scholar
  47. Imdorf, A., Kilchenmann, V., Bogdanov, S., Bachofen, B., Beretta, C. (1995) Toxizität von Thymol, Campher, Menthol und Eucalyptol auf Varroa jacobsoni Oud und Apis mellifera L. im Labortest. Apidologie 26, 27–31CrossRefGoogle Scholar
  48. Imdorf, A., Bogdanov, S., Ochoa, R.I., Calderone, N.W. (1999) Use of essential oils for the control of Varroa jacobsoni Oud. in honey bee colonies. Apidologie 30, 209–228CrossRefGoogle Scholar
  49. Isman, M.B. (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 51, 45–66PubMedCrossRefGoogle Scholar
  50. Jonsson, N.N., Hope, M. (2007) Progress in the epidemiology and diagnosis of amitraz resistance in the cattle tick Boophilus microplus. Vet. Parasitol. 146, 193–198PubMedCrossRefGoogle Scholar
  51. Keane, S., Ryan, M.F. (1999) Purification, characterisation, and inhibition by monoterpenes of acetylcholinesterase from the waxmoth, Galleria mellonella (L.). Insect Biochem. Mol. Biol. 29, 1097–1104CrossRefGoogle Scholar
  52. Kostyukovsky, M., Rafaeli, A., Gileadi, C., Demchenko, N., Shaaya, E. (2002) Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag. Sci. 58, 1101–1116PubMedCrossRefGoogle Scholar
  53. Le Conte, Y., Ellis, M., Ritter, W. (2010) Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie 41, 353–363CrossRefGoogle Scholar
  54. Lee, S.E., Lee, B.H., Choi, W.S., Park, B.S., Kim, J.G., Campbell, B.C. (2001) Fumigant toxicity of volatile natural products from Korean spices and medicinal plants towards the rice weevil, Sitophilus oryzae (L). Pest. Manag. Sci. 57, 548–553PubMedCrossRefGoogle Scholar
  55. Lee, S.P., Buber, M.T., Yang, Q., Cerne, R., Cortés, R.Y., Sprous, D.G., Bryant, R.W. (2008) Thymol and related alkyl phenols activate the hTRPA1 channel. Br. J. Pharmacol. 153, 1739–1749PubMedCrossRefGoogle Scholar
  56. Macpherson, L.J., Hwang, S.W., Miyamoto, T., Dubin, A.E., Patapoutian, A., Story, G.M. (2006) More than cool: promiscuous relationships of menthol and other sensory compounds. Mol. Cell. Neurosci. 32, 335–343PubMedCrossRefGoogle Scholar
  57. Meyer, J.M., Ejendal, K.F., Watts, V.J., Hill, C.A. (2011) Molecular and pharmacological characterization of two D(1)-like dopamine receptors in the Lyme disease vector, Ixodes scapularis. Insect Biochem. Mol. Biol. 41, 563–571PubMedCrossRefGoogle Scholar
  58. Milani, N., Lob, M. (1998) Plastic strips containing organophosphorous acaricides to control Varroa jacobsoni. Am. Bee J. 138, 612–615Google Scholar
  59. Mondet, F., Goodwin, M., Mercer, A. (2011) Age-related changes in the behavioural response of honeybees to Apiguard®, a thymol-based treatment used to control the mite Varroa destructor. J. Comp. Physiol. A 197, 1055–1062CrossRefGoogle Scholar
  60. Mustard, J.A., Blenau, W., Hamilton, I.S., Ward, V.K., Ebert, P.R., Mercer, A.R. (2003) Analysis of two D1-like dopamine receptors from the honey bee Apis mellifera reveals agonist-independent activation. Mol. Brain Res. 113, 67–77PubMedCrossRefGoogle Scholar
  61. Mustard, J.A., Kurshan, P.T., Hamilton, I.S., Blenau, W., Mercer, A.R. (2005) Developmental expression of a tyramine receptor gene in the brain of the honey bee, Apis mellifera. J. Comp. Neurol. 483, 66–75PubMedCrossRefGoogle Scholar
  62. Mutinelli, F., Rademacher, E. (2003) The use of drugs to control varroosis in honey bee colonies and European legislation: the current situation. Bee World 84, 55–59Google Scholar
  63. Nerio, L.S., Olivero-Verbel, J., Stashenko, E. (2010) Repellent activity of essential oils: a review. Bioresour. Technol. 101, 372–378PubMedCrossRefGoogle Scholar
  64. Parnas, M., Peters, M., Dadon, D., Lev, S., Vertkin, I., Slutsky, I., Minke, B. (2009) Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium 45, 300–309PubMedCrossRefGoogle Scholar
  65. Picollo, M.I., Toloza, A.C., Mougabure, C.G., Zygadlo, J., Zerba, E. (2008) Anticholinesterase and pediculicidal activities of monoterpenoids. Fitoterapia 79, 271–278PubMedCrossRefGoogle Scholar
  66. Price, D.N., Berry, M.S. (2006) Comparison of effects of octopamine and insecticidal essential oils on activity in the nerve cord, foregut, and dorsal unpaired median neurons of cockroaches. J. Insect Physiol. 52, 309–319PubMedCrossRefGoogle Scholar
  67. Priestley, C.M., Williamson, E.M., Wafford, K.A., Sattelle, D.B. (2003) Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br. J. Pharmacol. 140, 1363–1372PubMedCrossRefGoogle Scholar
  68. Rademacher, E. (1981) Laborversuche mit K-79 im Einsatz gegen Varroa jacobsoni. In: Diagnose und Therapie der Varroatose. Apimondia, Bucharest, pp. 155–167Google Scholar
  69. Rademacher, E. (1990) Die Varroatose der Bienen—Geschichte, Diagnose, Therapie. Verlag Schelzky und Jeep, BerlinGoogle Scholar
  70. Rademacher, E., Harz, M. (2006) Oxalic acid for the control of varroosis in honey bee colonies—a review. Apidologie 37, 98–120CrossRefGoogle Scholar
  71. Rademacher, E., Imdorf, A. (2004) Legalization of the use of oxalic acid in Varroa control. Bee World 85, 70–72Google Scholar
  72. Rademacher, E., Radtke, J. (2001) Investigations on the use of Thymovar against varroatosis. Apidologie 32, 488–489Google Scholar
  73. Raghu, P., Hardie, R.C. (2009) Regulation of Drosophila TRPC channels by lipid messengers. Cell Calcium 45, 566–573PubMedCrossRefGoogle Scholar
  74. Roeder, T. (1995) Pharmacology of the octopamine receptor from locust central nervous tissue (OAR3). Br. J. Pharmacol. 114, 210–216PubMedGoogle Scholar
  75. Rosenkranz, P., Aumeier, P., Ziegelmann, B. (2010) Biology and control of Varroa destructor. J. Invertebr. Pathol. 103(Suppl 1), S96–S119PubMedCrossRefGoogle Scholar
  76. Rotte, C., Krach, C., Balfanz, S., Baumann, A., Walz, B., Blenau, W. (2009) Molecular characterization and localization of the first tyramine receptor of the American cockroach (Periplaneta americana). Neuroscience 162, 1120–1133PubMedCrossRefGoogle Scholar
  77. Ryan, M.F., Byrne, O. (1988) Plant–insect coevolution and inhibition of acetylcholinesterase. J. Chem. Ecol. 14, 1965–1975CrossRefGoogle Scholar
  78. Sammataro, D., Gerson, U., Needham, G. (2000) Parasitic mites of honey bees: life history, implications, and impact. Annu. Rev. Entomol. 45, 519–548PubMedCrossRefGoogle Scholar
  79. Scheiner, R., Baumann, A., Blenau, W. (2006) Aminergic control and modulation of honeybee behaviour. Curr. Neuropharmacol. 4, 259–276PubMedCrossRefGoogle Scholar
  80. Schlenstedt, J., Balfanz, S., Baumann, A., Blenau, W. (2006) Am5-HT7: molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera). J. Neurochem. 98, 1985–1996PubMedCrossRefGoogle Scholar
  81. Siramon, P., Ohtani, Y., Ichiura, H. (2009) Biological performance of Eucalyptus camaldulensis leaf oils from Thailand against the subterranean termite Coptotermes formosanus Shiraki. J. Wood Sci. 55, 41–46CrossRefGoogle Scholar
  82. Stone, B.F., Atkinson, P.W., Knowles, C.O. (1974) Formamidine structure and detachment of the cattle tick Boophilus microplus. Pest. Biochem. Physiol. 4, 407–416CrossRefGoogle Scholar
  83. Thamm, M., Balfanz, S., Scheiner, R., Baumann, A., Blenau, W. (2010) Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior. Cell. Mol. Life Sci. 67, 2467–2479PubMedCrossRefGoogle Scholar
  84. Tong, F., Coats, J.R. (2010) Effects of monoterpenoid insecticides on [3H]-TBOB binding in house fly GABA receptor and 36Cl uptake in American cockroach ventral nerve cord. Pest. Biochem. Physiol. 98, 317–324CrossRefGoogle Scholar
  85. Troppmann, B., Balfanz, S., Baumann, A., Blenau, W. (2010) Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor. Br. J. Pharmacol. 159, 1450–1462PubMedCrossRefGoogle Scholar
  86. Vanden Broeck, J., Vulsteke, V., Huybrechts, R., De Loof, A. (1995) Characterization of a cloned locust tyramine receptor cDNA by functional expression in permanently transformed Drosophila S2 cells. J. Neurochem. 64, 2387–2395Google Scholar
  87. Vanengelsdorp, D., Evans, J.D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B.K., Frazier, M., Frazier, J., Cox-Foster, D., Chen, Y., Underwood, R., Tarpy, D.R., Pettis, J.S. (2009) Colony collapse disorder: a descriptive study. PLoS One 4, e6481PubMedCrossRefGoogle Scholar
  88. Venkatachalam, K., Montell, C. (2007) TRP channels. Annu. Rev. Biochem. 76, 387–417PubMedCrossRefGoogle Scholar
  89. Verlinden, H., Vleugels, R., Marchal, E., Badisco, L., Pflüger, H.J., Blenau, W., Vanden Broeck, J. (2010a) The role of octopamine in locusts and other insects. J. Insect Physiol. 56, 854–867PubMedCrossRefGoogle Scholar
  90. Verlinden, H., Vleugels, R., Marchal, E., Badisco, L., Tobback, J., Pflüger, H.J., Blenau, W., Vanden, B.J. (2010b) The cloning, phylogenetic relationship and distribution pattern of two new putative GPCR-type octopamine receptors in the desert locust (Schistocerca gregaria). J. Insect Physiol. 56, 868–875PubMedCrossRefGoogle Scholar
  91. Vigan, M. (2010) Essential oils: renewal of interest and toxicity. Eur. J. Dermatol. 20, 685–692PubMedGoogle Scholar
  92. Vogt-Eisele, A.K., Weber, K., Sherkheli, M.A., Vielhaber, G., Panten, J., Gisselmann, G., Hatt, H. (2007) Monoterpenoid agonists of TRPV3. Br. J. Pharmacol. 151, 530–540PubMedCrossRefGoogle Scholar
  93. Wachendörfer, G., Valder, W.A., Kaiser, E., Maul, V., Wissen, W., Ruttner, F., Harlander, P., Becker, W., Bottin, F. (1981) Erfahrungen mit dem Akarizid K 79 (Chlordimeformhydrochlorid) in Hessen zur Bekämpfung der Varroatose der Honigbiene. Dtsch. Tierarztl. Wochenschr. 88, 161–168PubMedGoogle Scholar
  94. Waliwitiya, R., Belton, P., Nicholson, R.A., Lowenberger, C.A. (2010) Effects of the essential oil constituent thymol and other neuroactive chemicals on flight motor activity and wing beat frequency in the blowfly Phaenicia sericata. Pest. Manag. Sci. 66, 277–289PubMedCrossRefGoogle Scholar
  95. Xu, H., Delling, M., Jun, J.C., Clapham, D.E. (2006) Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat. Neurosci. 9, 628–635PubMedCrossRefGoogle Scholar
  96. Zucchi, R., Chiellini, G., Scanlan, T.S., Grandy, D.K. (2006) Trace amine-associated receptors and their ligands. Br. J. Pharmacol. 149, 967–978PubMedCrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag, France 2011

Authors and Affiliations

  1. 1.Institut für Bienenkunde (Polytechnische Gesellschaft)Goethe-Universität Frankfurt am MainOberurselGermany
  2. 2.Institute of BiologyFreie Universität BerlinBerlinGermany
  3. 3.Institute of Complex Systems—Cellular Biophysics-(ICS-4)JülichGermany

Personalised recommendations