Skip to main content
Log in

Plant essential oils and formamidines as insecticides/acaricides: what are the molecular targets?

  • Review article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

The parasitic mite Varroa destructor is the main cause of the severe reduction in beekeeping during the last few decades. Therefore, efforts have been made to develop chemical treatments against the parasite. In the past, synthetic products were preferentially used to combat Varroa mites. Nowadays, mainly plant essential oils and organic acids are applied because they are safer and impose less unfavorable effects on the environment. Essential oils contain mixtures of mostly volatile and odorous terpenoid constituents. The molecular targets of these substances are tyramine and/or octopamine receptors that control and modulate vital functions ranging from metabolism to behavior. Disturbing the native function of these receptors in the mite results in deleterious effects in this parasite. This overview considers not only tyramine and octopamine receptors but also other potential targets of essential oils including ionotropic GABAA receptors, TRP type ion channels, and acetylcholinesterase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthony, J.P., Fyfe, L., Smith, H. (2005) Plant active components—a resource for antiparasitic agents? Trends Parasitol. 21, 462–468

    Article  PubMed  CAS  Google Scholar 

  • Baxter, G.D., Barker, S.C. (1999) Isolation of a cDNA for an octopamine-like, G-protein coupled receptor from the cattle tick, Boophilus microplus. Insect Biochem. Mol. Biol. 29, 461–467

    Article  PubMed  CAS  Google Scholar 

  • Beggs, K.T., Hamilton, I.S., Kurshan, P.T., Mustard, J.A., Mercer, A.R. (2005) Characterization of a D2-like dopamine receptor (AmDOP3) in honey bee, Apis mellifera. Insect Biochem. Mol. Biol. 35, 873–882

    Article  PubMed  CAS  Google Scholar 

  • Bischof, L.J., Enan, E.E. (2004) Cloning, expression and functional analysis of an octopamine receptor from Periplaneta americana. Insect Biochem. Mol. Biol. 34, 511–521

    Article  PubMed  CAS  Google Scholar 

  • Blenau, W., Baumann, A. (2001) Molecular and pharmacological properties of insect biogenic amine receptors: lessons from Drosophila melanogaster and Apis mellifera. Arch. Insect Biochem. Physiol. 48, 13–38

    Article  PubMed  CAS  Google Scholar 

  • Blenau, W., Baumann, A. (2003) Aminergic signal transduction in invertebrates: focus on tyramine and octopamine receptors. Recent Res Dev Neurochem 6, 225–240

    CAS  Google Scholar 

  • Blenau, W., Thamm, M. (2011) Distribution of serotonin (5-HT) and its receptors in the insect brain with focus on the mushroom bodies: lessons from Drosophila melanogaster and Apis mellifera. Arthropod Struct. 40, 381–394

    Article  CAS  Google Scholar 

  • Blenau, W., Erber, J., Baumann, A. (1998) Characterization of a dopamine D1 receptor from Apis mellifera: cloning, functional expression, pharmacology, and mRNA localization in the brain. J. Neurochem. 70, 15–23

    Article  PubMed  CAS  Google Scholar 

  • Blenau, W., Balfanz, S., Baumann, A. (2000) Amtyr1: characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor. J. Neurochem. 74, 900–908

    Article  PubMed  CAS  Google Scholar 

  • Bloomquist, J.R. (1996) Ion channels as targets for insecticides. Annu. Rev. Entomol. 41, 163–190

    Article  PubMed  CAS  Google Scholar 

  • Brody, T., Cravchik, A. (2000) Drosophila melanogaster G protein-coupled receptors. J. Cell Biol. 150, F83–F88

    Article  PubMed  CAS  Google Scholar 

  • Buckingham, S.D., Biggin, P.C., Sattelle, B.M., Brown, L.A., Sattelle, D.B. (2005) Insect GABA receptors: splicing, editing, and targeting by antiparasitics and insecticides. Mol. Pharmacol. 68, 942–951

    Article  PubMed  CAS  Google Scholar 

  • Calderone, N.W. (2010) Evaluation of Mite-Away-II for fall control of Varroa destructor (Acari: Varroidae) in colonies of the honey bee Apis mellifera (Hymenoptera: Apidae) in the northeastern USA. Exp. Appl. Acarol. 50, 123–132

    Article  PubMed  CAS  Google Scholar 

  • Calderone, N.W., Spivak, M. (1995) Plant extracts for control of the parasitic mite Varroa jacobsoni (Acari: Varroidae) in colonies of the western honey bee (Hymenoptera, Apidae). J. Econ. Entomol. 88, 1211–1215

    Google Scholar 

  • Chappell, J. (1995) Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 521–547

    Article  CAS  Google Scholar 

  • Chen, A., Holmes, S.P., Pietrantonio, P.V. (2004) Molecular cloning and functional expression of a serotonin receptor from the Southern cattle tick, Boophilus microplus (Acari: Ixodidae). Insect. Mol. Biol. 13, 45–54

    Article  PubMed  Google Scholar 

  • Chen, A.C., He, H., Davey, R.B. (2007) Mutations in a putative octopamine receptor gene in amitraz-resistant cattle ticks. Vet. Parasitol. 148, 379–383

    Article  PubMed  CAS  Google Scholar 

  • Cooley, L., Kelley, R., Spradling, A. (1988) Insertional mutagenesis of the Drosophila genome with single P elements. Science 239, 1121–1128

    Article  PubMed  CAS  Google Scholar 

  • Downer, R.G.H., Gole, J.W.D., Orr, G.L. (1985) Interaction of formamidines with octopamine-, dopamine-, and 5-hydroxytryptamine-sensitive adenylate cyclase in the nerve cord of Periplaneta americana. Pestic. Sci. 16, 472–478

    Article  CAS  Google Scholar 

  • Dudai, Y., Buxbaum, J., Corfas, G., Ofarim, M. (1987) Formamidines interact with Drosophila receptors, alter the flies’ behavior and reduce their learning ability. J. Comp. Physiol. A 161, 739–746

    Article  CAS  Google Scholar 

  • Elzen, P.J., Baxter, J.R., Spivak, M., Wilson, W.T. (2000) Control of Varroa jacobsoni Oud. resistant to fluvalinate and amitraz using coumaphos. Apidologie 31, 437–441

    Article  CAS  Google Scholar 

  • Enan, E. (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 130, 325–337

    Article  PubMed  CAS  Google Scholar 

  • Enan, E.E. (2005a) Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Insect Biochem. Mol. Biol. 35, 309–321

    Article  PubMed  CAS  Google Scholar 

  • Enan, E.E. (2005b) Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Arch. Insect Biochem. Physiol. 59, 161–171

    Article  PubMed  CAS  Google Scholar 

  • Evans, P.D., Gee, J.D. (1980) Action of formamidine pesticides on octopamine receptors. Nature 287, 60–62

    Article  PubMed  CAS  Google Scholar 

  • Evans, P.D., Maqueira, B. (2005) Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invert. Neurosci. 5, 111–118

    Article  PubMed  CAS  Google Scholar 

  • Floris, I., Cabras, P., Garau, V.L., Minelli, E.V., Satta, A., Troullier, J. (2001) Persistence and effectiveness of pyrethroids in plastic strips against Varroa jacobsoni (Acari: Varroidae) and mite resistance in a Mediterranean area. J. Econ. Entomol. 94, 806–810

    Article  PubMed  CAS  Google Scholar 

  • Floris, I., Satta, A., Cabras, P., Garau, V.L., Angioni, A. (2004) Comparison between two thymol formulations in the control of Varroa destructor: effectiveness, persistence, and residues. J. Econ. Entomol. 97, 187–191

    Article  PubMed  CAS  Google Scholar 

  • Genersch, E., Aubert, M. (2010) Emerging and re-emerging viruses of the honey bee (Apis mellifera L.). Vet. Res. 41, 54

    Article  PubMed  Google Scholar 

  • Ghasemi, V., Moharramipour, S., Tahmasbi, G. (2011) Biological activity of some plant essential oils against Varroa destructor (Acari: Varroidae), an ectoparasitic mite of Apis mellifera (Hymenoptera: Apidae). Exp. Appl. Acarol. 55, 147–154

    Article  PubMed  CAS  Google Scholar 

  • Gole, J.W.D., Orr, G.L., Downer, R.G.H. (1983) Interaction of formamidines with octopamine-sensitive adenylate cyclase receptor in the nerve cord of Periplaneta americana L. Life Sci. 32, 2939–2947

    Article  PubMed  CAS  Google Scholar 

  • Grohmann, L., Blenau, W., Erber, J., Ebert, P.R., Strünker, T., Baumann, A. (2003) Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain. J. Neurochem. 86, 725–735

    Article  PubMed  CAS  Google Scholar 

  • Grundy, D.L., Still, C.C. (1985) Inhibition of acetylcholinesterases by pulegone-1,2-epoxide. Pestic. Biochem. Physiol. 23, 383–388

    Article  CAS  Google Scholar 

  • Guzman-Novoa, E., Eccles, L., Calvete, Y., McGowan, J., Kelly, P.G., Correa, A. (2010) Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada. Apidologie 41, 443–450

    Article  Google Scholar 

  • Hauser, F., Cazzamali, G., Williamson, M., Blenau, W., Grimmelikhuijzen, C.J.P. (2006) A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog. Neurobiol. 80, 1–19

    Article  PubMed  CAS  Google Scholar 

  • Hauser, F., Cazzamali, G., Williamson, M., Park, Y., Li, B., Tanaka, Y., Predel, R., Neupert, S., Schachtner, J., Verleyen, P., Grimmelikhuijzen, C.J. (2008) A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Front. Neuroendocrinol. 29, 142–165

    Article  PubMed  CAS  Google Scholar 

  • Hill, C.A., Fox, A.N., Pitts, R.J., Kent, L.B., Tan, P.L., Chrystal, M.A., Cravchik, A., Collins, F.H., Robertson, H.M., Zwiebel, L.J. (2002) G protein-coupled receptors in Anopheles gambiae. Science 298, 176–178

    Article  PubMed  CAS  Google Scholar 

  • Hirashima, A., Huang, H. (2008) Homology modeling, agonist binding site identification, and docking in octopamine receptor of Periplaneta americana. Comput. Biol. Chem. 32, 185–190

    Article  PubMed  CAS  Google Scholar 

  • Hiripi, L., Juhos, S., Downer, R.G. (1994) Characterization of tyramine and octopamine receptors in the insect (Locusta migratoria migratorioides) brain. Brain Res. 633, 119–126

    Article  PubMed  CAS  Google Scholar 

  • Hollingworth, R.M. (1976) Chemistry, biological activity, and uses of formamidine pesticides. Environ. Health Perspect. 14, 57–69

    Article  PubMed  CAS  Google Scholar 

  • Hollingworth, R.M., Murdock, L.L. (1980) Formamidine pesticides: octopamine-like actions in a firefly. Science 208, 74–76

    Article  PubMed  CAS  Google Scholar 

  • Holstein, S.A., Hohl, R.J. (2004) Isoprenoids: remarkable diversity of form and function. Lipids 39, 293–309

    Article  PubMed  CAS  Google Scholar 

  • Hoppe, H. (1990) Vergleichende Untersuchungen zur Biotechnischen Bekämpfung der Varroatose. Dissertation, Justus-Liebig-Universität Giessen

  • Houghton, P.J., Ren, Y., Howes, M.J. (2006) Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep. 23, 181–199

    Article  PubMed  CAS  Google Scholar 

  • Huang, J., Hamasaki, T., Ozoe, F., Ohta, H., Enomoto, K., Kataoka, H., Sawa, Y., Hirota, A., Ozoe, Y. (2007) Identification of critical structural determinants responsible for octopamine binding to the α-adrenergic-like Bombyx mori octopamine receptor. Biochemistry 46, 5896–5903

    Article  PubMed  CAS  Google Scholar 

  • Humphries, M.A., Mustard, J.A., Hunter, S.J., Mercer, A., Ward, V., Ebert, P.R. (2003) Invertebrate D2 type dopamine receptor exhibits age-based plasticity of expression in the mushroom bodies of the honeybee brain. J. Neurobiol. 55, 315–330

    Article  PubMed  CAS  Google Scholar 

  • Imdorf, A., Kilchenmann, V., Bogdanov, S., Bachofen, B., Beretta, C. (1995) Toxizität von Thymol, Campher, Menthol und Eucalyptol auf Varroa jacobsoni Oud und Apis mellifera L. im Labortest. Apidologie 26, 27–31

    Article  CAS  Google Scholar 

  • Imdorf, A., Bogdanov, S., Ochoa, R.I., Calderone, N.W. (1999) Use of essential oils for the control of Varroa jacobsoni Oud. in honey bee colonies. Apidologie 30, 209–228

    Article  CAS  Google Scholar 

  • Isman, M.B. (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 51, 45–66

    Article  PubMed  CAS  Google Scholar 

  • Jonsson, N.N., Hope, M. (2007) Progress in the epidemiology and diagnosis of amitraz resistance in the cattle tick Boophilus microplus. Vet. Parasitol. 146, 193–198

    Article  PubMed  CAS  Google Scholar 

  • Keane, S., Ryan, M.F. (1999) Purification, characterisation, and inhibition by monoterpenes of acetylcholinesterase from the waxmoth, Galleria mellonella (L.). Insect Biochem. Mol. Biol. 29, 1097–1104

    Article  CAS  Google Scholar 

  • Kostyukovsky, M., Rafaeli, A., Gileadi, C., Demchenko, N., Shaaya, E. (2002) Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag. Sci. 58, 1101–1116

    Article  PubMed  CAS  Google Scholar 

  • Le Conte, Y., Ellis, M., Ritter, W. (2010) Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie 41, 353–363

    Article  Google Scholar 

  • Lee, S.E., Lee, B.H., Choi, W.S., Park, B.S., Kim, J.G., Campbell, B.C. (2001) Fumigant toxicity of volatile natural products from Korean spices and medicinal plants towards the rice weevil, Sitophilus oryzae (L). Pest. Manag. Sci. 57, 548–553

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.P., Buber, M.T., Yang, Q., Cerne, R., Cortés, R.Y., Sprous, D.G., Bryant, R.W. (2008) Thymol and related alkyl phenols activate the hTRPA1 channel. Br. J. Pharmacol. 153, 1739–1749

    Article  PubMed  CAS  Google Scholar 

  • Macpherson, L.J., Hwang, S.W., Miyamoto, T., Dubin, A.E., Patapoutian, A., Story, G.M. (2006) More than cool: promiscuous relationships of menthol and other sensory compounds. Mol. Cell. Neurosci. 32, 335–343

    Article  PubMed  CAS  Google Scholar 

  • Meyer, J.M., Ejendal, K.F., Watts, V.J., Hill, C.A. (2011) Molecular and pharmacological characterization of two D(1)-like dopamine receptors in the Lyme disease vector, Ixodes scapularis. Insect Biochem. Mol. Biol. 41, 563–571

    Article  PubMed  CAS  Google Scholar 

  • Milani, N., Lob, M. (1998) Plastic strips containing organophosphorous acaricides to control Varroa jacobsoni. Am. Bee J. 138, 612–615

    Google Scholar 

  • Mondet, F., Goodwin, M., Mercer, A. (2011) Age-related changes in the behavioural response of honeybees to Apiguard®, a thymol-based treatment used to control the mite Varroa destructor. J. Comp. Physiol. A 197, 1055–1062

    Article  CAS  Google Scholar 

  • Mustard, J.A., Blenau, W., Hamilton, I.S., Ward, V.K., Ebert, P.R., Mercer, A.R. (2003) Analysis of two D1-like dopamine receptors from the honey bee Apis mellifera reveals agonist-independent activation. Mol. Brain Res. 113, 67–77

    Article  PubMed  CAS  Google Scholar 

  • Mustard, J.A., Kurshan, P.T., Hamilton, I.S., Blenau, W., Mercer, A.R. (2005) Developmental expression of a tyramine receptor gene in the brain of the honey bee, Apis mellifera. J. Comp. Neurol. 483, 66–75

    Article  PubMed  CAS  Google Scholar 

  • Mutinelli, F., Rademacher, E. (2003) The use of drugs to control varroosis in honey bee colonies and European legislation: the current situation. Bee World 84, 55–59

    Google Scholar 

  • Nerio, L.S., Olivero-Verbel, J., Stashenko, E. (2010) Repellent activity of essential oils: a review. Bioresour. Technol. 101, 372–378

    Article  PubMed  CAS  Google Scholar 

  • Parnas, M., Peters, M., Dadon, D., Lev, S., Vertkin, I., Slutsky, I., Minke, B. (2009) Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium 45, 300–309

    Article  PubMed  CAS  Google Scholar 

  • Picollo, M.I., Toloza, A.C., Mougabure, C.G., Zygadlo, J., Zerba, E. (2008) Anticholinesterase and pediculicidal activities of monoterpenoids. Fitoterapia 79, 271–278

    Article  PubMed  CAS  Google Scholar 

  • Price, D.N., Berry, M.S. (2006) Comparison of effects of octopamine and insecticidal essential oils on activity in the nerve cord, foregut, and dorsal unpaired median neurons of cockroaches. J. Insect Physiol. 52, 309–319

    Article  PubMed  CAS  Google Scholar 

  • Priestley, C.M., Williamson, E.M., Wafford, K.A., Sattelle, D.B. (2003) Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br. J. Pharmacol. 140, 1363–1372

    Article  PubMed  CAS  Google Scholar 

  • Rademacher, E. (1981) Laborversuche mit K-79 im Einsatz gegen Varroa jacobsoni. In: Diagnose und Therapie der Varroatose. Apimondia, Bucharest, pp. 155–167

  • Rademacher, E. (1990) Die Varroatose der Bienen—Geschichte, Diagnose, Therapie. Verlag Schelzky und Jeep, Berlin

    Google Scholar 

  • Rademacher, E., Harz, M. (2006) Oxalic acid for the control of varroosis in honey bee colonies—a review. Apidologie 37, 98–120

    Article  CAS  Google Scholar 

  • Rademacher, E., Imdorf, A. (2004) Legalization of the use of oxalic acid in Varroa control. Bee World 85, 70–72

    Google Scholar 

  • Rademacher, E., Radtke, J. (2001) Investigations on the use of Thymovar against varroatosis. Apidologie 32, 488–489

    Google Scholar 

  • Raghu, P., Hardie, R.C. (2009) Regulation of Drosophila TRPC channels by lipid messengers. Cell Calcium 45, 566–573

    Article  PubMed  CAS  Google Scholar 

  • Roeder, T. (1995) Pharmacology of the octopamine receptor from locust central nervous tissue (OAR3). Br. J. Pharmacol. 114, 210–216

    PubMed  CAS  Google Scholar 

  • Rosenkranz, P., Aumeier, P., Ziegelmann, B. (2010) Biology and control of Varroa destructor. J. Invertebr. Pathol. 103(Suppl 1), S96–S119

    Article  PubMed  Google Scholar 

  • Rotte, C., Krach, C., Balfanz, S., Baumann, A., Walz, B., Blenau, W. (2009) Molecular characterization and localization of the first tyramine receptor of the American cockroach (Periplaneta americana). Neuroscience 162, 1120–1133

    Article  PubMed  CAS  Google Scholar 

  • Ryan, M.F., Byrne, O. (1988) Plant–insect coevolution and inhibition of acetylcholinesterase. J. Chem. Ecol. 14, 1965–1975

    Article  CAS  Google Scholar 

  • Sammataro, D., Gerson, U., Needham, G. (2000) Parasitic mites of honey bees: life history, implications, and impact. Annu. Rev. Entomol. 45, 519–548

    Article  PubMed  CAS  Google Scholar 

  • Scheiner, R., Baumann, A., Blenau, W. (2006) Aminergic control and modulation of honeybee behaviour. Curr. Neuropharmacol. 4, 259–276

    Article  PubMed  CAS  Google Scholar 

  • Schlenstedt, J., Balfanz, S., Baumann, A., Blenau, W. (2006) Am5-HT7: molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera). J. Neurochem. 98, 1985–1996

    Article  PubMed  CAS  Google Scholar 

  • Siramon, P., Ohtani, Y., Ichiura, H. (2009) Biological performance of Eucalyptus camaldulensis leaf oils from Thailand against the subterranean termite Coptotermes formosanus Shiraki. J. Wood Sci. 55, 41–46

    Article  CAS  Google Scholar 

  • Stone, B.F., Atkinson, P.W., Knowles, C.O. (1974) Formamidine structure and detachment of the cattle tick Boophilus microplus. Pest. Biochem. Physiol. 4, 407–416

    Article  CAS  Google Scholar 

  • Thamm, M., Balfanz, S., Scheiner, R., Baumann, A., Blenau, W. (2010) Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior. Cell. Mol. Life Sci. 67, 2467–2479

    Article  PubMed  CAS  Google Scholar 

  • Tong, F., Coats, J.R. (2010) Effects of monoterpenoid insecticides on [3H]-TBOB binding in house fly GABA receptor and 36Cl uptake in American cockroach ventral nerve cord. Pest. Biochem. Physiol. 98, 317–324

    Article  CAS  Google Scholar 

  • Troppmann, B., Balfanz, S., Baumann, A., Blenau, W. (2010) Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor. Br. J. Pharmacol. 159, 1450–1462

    Article  PubMed  CAS  Google Scholar 

  • Vanden Broeck, J., Vulsteke, V., Huybrechts, R., De Loof, A. (1995) Characterization of a cloned locust tyramine receptor cDNA by functional expression in permanently transformed Drosophila S2 cells. J. Neurochem. 64, 2387–2395

    Google Scholar 

  • Vanengelsdorp, D., Evans, J.D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B.K., Frazier, M., Frazier, J., Cox-Foster, D., Chen, Y., Underwood, R., Tarpy, D.R., Pettis, J.S. (2009) Colony collapse disorder: a descriptive study. PLoS One 4, e6481

    Article  PubMed  Google Scholar 

  • Venkatachalam, K., Montell, C. (2007) TRP channels. Annu. Rev. Biochem. 76, 387–417

    Article  PubMed  CAS  Google Scholar 

  • Verlinden, H., Vleugels, R., Marchal, E., Badisco, L., Pflüger, H.J., Blenau, W., Vanden Broeck, J. (2010a) The role of octopamine in locusts and other insects. J. Insect Physiol. 56, 854–867

    Article  PubMed  CAS  Google Scholar 

  • Verlinden, H., Vleugels, R., Marchal, E., Badisco, L., Tobback, J., Pflüger, H.J., Blenau, W., Vanden, B.J. (2010b) The cloning, phylogenetic relationship and distribution pattern of two new putative GPCR-type octopamine receptors in the desert locust (Schistocerca gregaria). J. Insect Physiol. 56, 868–875

    Article  PubMed  CAS  Google Scholar 

  • Vigan, M. (2010) Essential oils: renewal of interest and toxicity. Eur. J. Dermatol. 20, 685–692

    PubMed  Google Scholar 

  • Vogt-Eisele, A.K., Weber, K., Sherkheli, M.A., Vielhaber, G., Panten, J., Gisselmann, G., Hatt, H. (2007) Monoterpenoid agonists of TRPV3. Br. J. Pharmacol. 151, 530–540

    Article  PubMed  CAS  Google Scholar 

  • Wachendörfer, G., Valder, W.A., Kaiser, E., Maul, V., Wissen, W., Ruttner, F., Harlander, P., Becker, W., Bottin, F. (1981) Erfahrungen mit dem Akarizid K 79 (Chlordimeformhydrochlorid) in Hessen zur Bekämpfung der Varroatose der Honigbiene. Dtsch. Tierarztl. Wochenschr. 88, 161–168

    PubMed  Google Scholar 

  • Waliwitiya, R., Belton, P., Nicholson, R.A., Lowenberger, C.A. (2010) Effects of the essential oil constituent thymol and other neuroactive chemicals on flight motor activity and wing beat frequency in the blowfly Phaenicia sericata. Pest. Manag. Sci. 66, 277–289

    Article  PubMed  CAS  Google Scholar 

  • Xu, H., Delling, M., Jun, J.C., Clapham, D.E. (2006) Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat. Neurosci. 9, 628–635

    Article  PubMed  CAS  Google Scholar 

  • Zucchi, R., Chiellini, G., Scanlan, T.S., Grandy, D.K. (2006) Trace amine-associated receptors and their ligands. Br. J. Pharmacol. 149, 967–978

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Prof. B. Grünewald (Oberursel) for the invitation to submit this review article. The work of the authors was supported by the German Science Foundation (BL 469/7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Blenau.

Additional information

Manuscript editor: Bernd Grünewald

Huiles essentielles de plantes et formamidines, comme insecticides/acaricides: quelles sont leurs cibles moléculaires?

GABA / récepteur couplé à une protéine G / octopamine / thymol / tyramine

Ätherische Öle und Formamidine als Insektizide/Akarizide. Welches sind die molekularen Wirkorte?

GABA / G Protein-gekoppelter Rezeptor / Octopamin / Thymol / Tyramin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blenau, W., Rademacher, E. & Baumann, A. Plant essential oils and formamidines as insecticides/acaricides: what are the molecular targets?. Apidologie 43, 334–347 (2012). https://doi.org/10.1007/s13592-011-0108-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13592-011-0108-7

Keywords

Navigation