Skip to main content
Log in

Characterization of selected Gram-negative non-fermenting bacteria isolated from honey bees (Apis mellifera carnica)

  • Original article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

This study was conducted to improve the knowledge about bacteria associated with honey bees, Apis mellifera carnica. In this survey, the diversity of Gram-negative non-fermenting bacteria isolated and cultivated from pollen loads, honey sac, freshly stored nectar, and honey was investigated. Bacteria were characterized by a polyphasic approach. Based on morphological and physiological characteristics and comparison of isolates protein patterns after sodium dodecyl sulfate–polyacrylamide gel electrophoresis, 11 protein similarity groups were established and confirmed by enterobacterial repetitive intergenic consensus PCR. One isolate, representing a protein similarity group (representative strain), was characterized in more detail by analysis of respiratory quinones, amplified ribosomal DNA restriction analysis, and 16S rDNA sequence analysis. Based on the results of these examinations, seven representative strains were identified as members of the genus Pseudomonas. The remaining representative strains were allocated to the genera Acinetobacter, Chryseobacterium, Stenotrophomonas, and Commamonas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Babendreier, D., Joller, D., Romeis, J., Bigler, F., Widmer, F. (2007) Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol. Ecol. 59, 600–610

    Article  PubMed  CAS  Google Scholar 

  • Bakonyi, T., Derakhshifar, I., Grabensteiner, E., Nowotny, N. (2003) Development and evaluation of PCR assays for the detection of Paenibacillus larvae in honey samples: comparison with isolation and biochemical characterization. Appl. Environ. Microbiol. 69, 1504–1510

    Article  PubMed  CAS  Google Scholar 

  • Beetsma, J. (1985) Feeding behaviour of nurse bees, larval food composition and caste differentiation in the honey bee. In: Hölldobler, B., Lindauer, M. (eds.) Fortschritte der Zoologie 31: experimental behavioral ecology, pp. 407–410. Fischer, Stuttgart

    Google Scholar 

  • Brook, I. (2007) Infant botulism. J. Perinatol. 27, 175–180

    Article  PubMed  CAS  Google Scholar 

  • Buczolits, S., Denner, E.B., Vybiral, D., Wieser, M., Kämpfer, P., Busse, H.-J. (2002) Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp. nov. Int. J. Syst. Evol. Microbiol. 52, 445–456

    PubMed  CAS  Google Scholar 

  • Busse, H.-J., El-Banna, T., Auling, G. (1989) Evaluation of different approaches for identification of xenobiotic-degrading pseudomonads. Appl. Environ. Microbiol. 55, 1578–1583

    PubMed  CAS  Google Scholar 

  • Busse, H.-J., Denner, E.B.M., Buczolits, S., Salkinoja-Salonen, M., Bennasar, A., Kämpfer, P. (2003) Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int. J. Syst. Evol. Microbiol. 53, 1253–1260

    Article  PubMed  CAS  Google Scholar 

  • Cañamás, T.P., Viñas, I., Usall, J., Magan, N., Morelló, J.R., Teixidó, N. (2007) Relative importance of amino acids, glycine-betaine and ectoine synthesis in the biocontrol agent Pantoea agglomerans CPA-2 in response to osmotic, acidic and heat stress. Lett. Appl. Microbiol. 45, 6–12

    Article  PubMed  Google Scholar 

  • Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G., Thompson, J.D. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3497–3500

    Article  PubMed  CAS  Google Scholar 

  • Collins, M.D., Jones, D. (1981) Distribution of isoprenoid quinone structural types of bacteria and their taxonomic implications. Microbiol. Rev. 45, 316–354

    PubMed  CAS  Google Scholar 

  • De Vos, P. (2002) Nucleic acid analysis and SDS-PAGE of whole-cell proteins in Bacillus taxonomy. In: Berkeley, R., Heyndrickx, M., Logan, N., de Vos, P. (eds.) Applications and systematics of Bacillus and relatives, pp. 141–159. Blackwell, Oxford

    Chapter  Google Scholar 

  • De Werra, P., Baehler, E., Huser, A., Keel, C., Maurhofer, M. (2008) Detection of plant-modulated alterations in antifungal gene expression in Pseudomonas fluorescens CHA0 on roots by flow cytometry. Appl. Environ. Microbiol. 74, 1339–1349

    Article  PubMed  Google Scholar 

  • Evans, J.D., Armstrong, T.N. (2006) Antagonistic interactions between honey bee bacterial symbionts and implications for disease. BMC Ecol. 6, 4

    Article  PubMed  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

  • Genersch, E. (2010) American Foulbrood in honeybees and its causative agent, Paenibacillus larvae. J. Invertebr. Pathol. 103(Suppl 1), S10–S19

    Article  PubMed  Google Scholar 

  • Gerhard, P., Murray, R.E., Wood, W.A., Krieg, R. (eds.) (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Giddens, S.R., Houliston, G.J., Mahanty, H.K. (2003) The influence of antibiotic production and pre-emptive colonization on the population dynamics of Pantoea agglomerans (Erwinia herbicola) Eh1087 and Erwinia amylovora in planta. Environ. Microbiol. 5, 1016–1021

    Article  PubMed  CAS  Google Scholar 

  • Gilliam, M. (1997) Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiol. Lett. 155, 1–10

    Article  CAS  Google Scholar 

  • Gomes, S., Dias, L.G., Moreira, L.L., Rodrigues, P., Estevinho, L. (2010) Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food Chem. Toxicol. 48, 544–548

    Article  PubMed  CAS  Google Scholar 

  • Goncalves, E.R., Rosato, Y.B. (2000) Genotypic characterization of xanthomonad strains isolated from passion fruit plants (Passiflora spp.) and their relatedness to different Xanthomonas species. Int. J. Syst. Evol. Microbiol. 50, 811–821

    Article  PubMed  CAS  Google Scholar 

  • Hauser, E., Kämpfer, P., Busse, H.-J. (2004) Pseudomonas psychrotolerans sp. nov. Int. J. Syst. Evol. Microbiol. 54, 1633–1637

    Article  PubMed  CAS  Google Scholar 

  • Iurlina, M.O., Fritz, R. (2005) Characterization of microorganisms in Argentinean honeys from different sources. Int. J. Food Microbiol. 105, 297–304

    Article  PubMed  CAS  Google Scholar 

  • Jeyaprakash, A., Hoy, M.A., Allsopp, M.H. (2003) Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. J. Invertebr. Pathol. 84, 96–103

    Article  PubMed  CAS  Google Scholar 

  • Kačániová, M., Chlebo, R., Kopernicky, M., Trakovicka, A. (2004) Microflora of the honeybee gastrointestinal tract. Folia Microbiol. (Praha) 49, 169–171

    Article  Google Scholar 

  • Kačániová, M., Pavlicová, S., Hascík, P., Kociubinski, G., Kńazovická, V., Sudzina, M., Sudzinová, J., Fikselová, M. (2009) Microbial communities in bees, pollen and honey from Slovakia. Acta. Microbiol. Immunol. Hung. 56, 285–295

    Article  PubMed  Google Scholar 

  • Kämpfer, P., Dreyer, U., Neef, A., Dott, W., Busse, H.-J. (2003) Chryseobacterium defluvii sp. nov., isolated from wastewater. Int. J. Syst. Evol. Microbiol. 53(Pt 1), 93–97

    Article  PubMed  Google Scholar 

  • Kardos, G., Nagy, J., Antal, M., Bistyak, A., Tenk, M., Kiss, I. (2007) Development of a novel PCR assay specific for Riemerella anatipestifer. Lett. Appl. Microbiol. 44, 145–148

    Article  PubMed  CAS  Google Scholar 

  • Kersters, K. (1985) Numerical methods in the classification of bacteria by protein electrophoresis. In: Goodfellow, M., Jones, D., Priest, F.G. (eds.) Computer-assisted bacterial systematics, pp. 337–368. Academic, London

    Google Scholar 

  • Klingauf, F. (2006) General status of biological control—opening and introductory lecture. In: Zeller, W., Ulrich, C. (eds) Proceedings of 1st international symposium on biological control of bacterial plant diseases. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft Berlin-Dahlem 408, pp 13–19

  • Kwakman, P.H., Te Velde, A.A., de Boer, L., Speijer, D., Vandenbroucke-Grauls, C.M., Zaat, S.A. (2010) How honey kills bacteria. FASEB J. 24, 2576–2582

    Article  PubMed  CAS  Google Scholar 

  • Lane, D.J. (1991) 16S/23S rRNA sequencing. In: Stackebrandt, E., Goodfellow, M. (eds.) Nucleic acid techniques in bacterial systematics, pp. 115–175. Wiley, Chichester

    Google Scholar 

  • Liu, C.H., Chen, X., Liu, T.T., Lian, B., Gu, Y., Caer, V., Xue, Y.R., Wang, B.T. (2007) Study of the antifungal activity of Acinetobacter baumannii LCH001 in vitro and identification of its antifungal components. Appl. Microbiol. Biotechnol. 76, 459–466

    Article  PubMed  CAS  Google Scholar 

  • Loncaric, I., Donat, C., Antlinger, B., Oberlerchner, J.T., Heissenberger, B., Moosbeckhofer, R. (2008) Strain-specific detection of two Aureobasidium pullulans strains, fungal biocontrol agents of fire blight by new, developed multiplex-PCR. J. Appl. Microbiol. 104, 1433–1441

    Article  PubMed  CAS  Google Scholar 

  • Loncaric, I., Heigl, H., Licek, E., Moosbeckhofer, R., Busse, H.J., Rosengarten, R. (2009) Typing of Pantoea agglomerans isolated from colonies of honey bees (Apis mellifera) and culturability of selected strains from honey. Apidologie 40, 40–54

    Article  CAS  Google Scholar 

  • López, A.C., Alippi, A.M. (2007) Phenotypic and genotypic diversity of Bacillus cereus isolates recovered from honey. Int. J. Food Microbiol. 117, 175–184

    Article  PubMed  Google Scholar 

  • Lusby, P.E., Coombes, A.L., Wilkinson, J.M. (2005) Bactericidal activity of different honeys against pathogenic bacteria. Arch. Med. Res. 36, 464–467

    Article  PubMed  CAS  Google Scholar 

  • Lyapunov, YaE, Kuzyaev, R.Z., Khismatullin, R.G., Bezgodova, O.A. (2008) Intestinal enterobacteria of the hibernating Apis mellifera mellifera L. bees. Microbiology 77, 421–428

    Article  Google Scholar 

  • Mohr, K.I., Tebbe, C.C. (2006) Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ. Microbiol. 8, 258–272

    Article  PubMed  CAS  Google Scholar 

  • Mohr, K.I., Tebbe, C.C. (2007) Field study results on the probability and risk of a horizontal gene transfer from transgenic herbicide-resistant oilseed rape pollen with gut bacteria of bees. Appl. Microbiol. Biotechnol. 75, 573–582

    Article  PubMed  CAS  Google Scholar 

  • Molan, P.C. (1992a) The antibacterial activity of honey: 1. The nature of the antibacterial activity. Bee World 73, 5–28

    Google Scholar 

  • Molan, P.C. (1992b) The antibacterial activity of honey: 2. Variation in the potency of the antibacterial activity. Bee World 73, 59–76

    Google Scholar 

  • Molan P.C. (2001) Honey as a topical antibacterial agent for treatment of infected wounds. World Wide Wounds. [online] http://www.worldwidewounds.com/2001/november/Molan/honey-as-topical-agent.html. Accessed 12 May 2010

  • Oyaizu, H., Komagata, K. (1983) Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J. Gen. Appl. Microbiol. 29, 17–40

    Article  CAS  Google Scholar 

  • Palumbo, J.D., O’Keeffe, T.L., Abbas, H.K. (2007) Isolation of maize soil and rhizosphere bacteria with antagonistic activity against Aspergillus flavus and Fusarium verticillioides. J. Food Prot. 70, 1615–1621

    PubMed  Google Scholar 

  • Pearson, W.R., Lipman, D.J. (1988) Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85, 2444–2448

    Article  PubMed  CAS  Google Scholar 

  • Piccini, C., Antúnez, K., Zunino, P. (2004) An approach to the characterization of the honey bee hive bacterial flora. J. Apic. Res. 43, 101–104

    Google Scholar 

  • Pujol, M., Badosa, E., Montesinos, E. (2007) Epiphytic fitness of a biological control agent of fire blight in apple and pear orchards under Mediterranean weather conditions. FEMS Microbiol. Ecol. 59, 186–193

    Article  PubMed  CAS  Google Scholar 

  • Rada, V., Machoa, M., Huk, J., Marounek, M., Duskova, D. (1997) Microflora in the honeybee digestive tract: counts, characteristics and sensitivity with veterinary drugs. Apidologie 28, 357–365

    Article  CAS  Google Scholar 

  • Romanenko, L.A., Uchino, M., Tanaka, N., Frolova, G.M., Slinkina, N.N., Mikhailov, V.V. (2008) Occurrence and antagonistic potential of Stenotrophomonas strains isolated from deep-sea invertebrates. Arch. Microbiol. 189, 337–344

    Article  PubMed  CAS  Google Scholar 

  • Ruppitsch, W., Stöger, A., Indra, A., Grif, K., Schabereiter-Gurtner, C., Hirschl, A., Allerberger, F. (2007) Stability of partial 16S ribosomal RNA gene sequence analysis for the identification of dangerous bacterial pathogens. J. Appl. Microbiol. 102, 852–859

    Article  PubMed  CAS  Google Scholar 

  • Smolska-Szymczewska, B. (1989) The influence of the chosen chemotherapeutics on the intestinal flora of honey bees. Apiacta 24, 71–79

    Google Scholar 

  • Snowdon, J.A., Cliver, D.O. (1996) Microorganisms in honey. Int. J. Food Microbiol. 31, 1–26

    Article  PubMed  CAS  Google Scholar 

  • Stolz, A., Busse, H.-J., Kämpfer, P. (2007) Pseudomonas knackmussii sp. nov. Int. J. Syst. Evol. Microbiol. 57, 572–576

    Article  PubMed  CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Taormina, P.J., Niemira, B.A., Beuchat, L.R. (2001) Inhibitory activity of honey against foodborne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. Int. J. Food Microbiol. 69, 217–225

    Article  PubMed  CAS  Google Scholar 

  • Thomson, S.V., Hansen, D.R., Flint, K.M., Vandenberg, J.D. (1992) Dissemination of bacteria antagonistic to Erwinia amylovora by honey bees. Plant Dis. 76, 1052–1056

    Article  Google Scholar 

  • Tindall, B.J. (1990) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst. Appl. Microbiol. 13, 128–130

    CAS  Google Scholar 

  • Tysset, C., Rousseau, M., Durand, C. (1980) Microbism and wholesomeness of commercial honey. Apiacta 15, 51–60

    Google Scholar 

  • Versalovic, J., Koeuth, T., Lupski, J.R. (1991) Distribution of repetitive DNA sequences in eubacteria and application with fingerprinting of bacterial genomes. Nucleic Acids Res. 19, 6823–6831

    Article  PubMed  CAS  Google Scholar 

  • White, J.W., Subers, M.H., Schepartz, A. (1963) The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochem. Biophys. Acta. 73, 57–70

    Article  PubMed  CAS  Google Scholar 

  • Yokota, A., Akagawa-Matsushia, M., Hiraishi, A., Katayama, Y., Urakami, T., Yamasato, K. (1992) Distribution of quinone systems in microorganisms: Gram-negative eubacteria. Bull. Jpn. Fed. Cult. Coll. 8, 136–171

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by internal funds of the Institute of Bacteriology, Mycology and Hygiene, University of Veterinary Medicine Vienna, Institute for Apiculture, Austrian Agency for Health and Food Safety as well as Clinic for Avian, Reptile and Fish Medicine, University of Veterinary Medicine Vienna. We thank Gabriele Rothmüller, Irmgard Derakhshifar, Hermann Pechhacker, and especially Sandra Buczolits for helpful comments and suggestions and Christine Schramm and Katharina Etter for technical assistance.

Caractérisation de bactéries sélectionnées, à Gram-négatif, non fermentantes, associées aux abeilles ( Apis mellifera carnica )

Diversité bactérienne / PCR / miel / abeille / gène 16S rADN

Zusammenfassung – Charakterisierung Gram-negativer, nicht fermentierender Bakterien, die aus Honigbienen ( Apis mellifera carnica ) isoliert worden waren. Die vorliegende Studie wurde durchgeführt, um die Diversität der ausgewählten Gram-negativen, nicht fermentierenden Bakterien, die von Honigbienen (Apis mellifera carnica) gesammelten Pollenhöschen, dem Honigblaseninhalt, frisch eingetragenem Nektar (FSN) und Honig zu untersuchen. Die Diversität der Gram-negativen, nicht fermentierenden Bakterien wurde durch einen polyphasischen Ansatz (Kulturbedingungen, morphologische und biochemische Charakteristika; Vergleich der Proteinmuster der Isolate nach SDS-PAGE, ERIC-PCR; Analyse der respiratorischen Chinone, ARDRA und 16S rDNA Sequenzanalyse) charakterisiert. Dabei wurden aus den insgesamt 724 gewonnen Bakterienisolaten 104 Isolate als nicht-sporenbildende gram-negative Stäbchen charakterisiert, die aus Glucose keine Säure durch Gärung bilden konnten. Diese 104 Isolate wurden dann weiter untersucht. Nach dem Vergleich der mittels SDS-PAGE erhaltenen Proteinmuster wurden 11 Gruppen mit ähnlichem Proteinmuster gebildet, die durch ERIC-PCR bestätigt werden konnten. Aus jeder Gruppe mit ähnlichem Proteinmuster wurde je ein Isolat ausgewählt (= repräsentativer Stamm) und durch die Analyse der respiratorischen Chinone, ARDRA und 16S rDNA Sequenzanalyse näher untersucht. Ausgehend von den Ergebnissen dieser Untersuchungen konnten 7 der repräsentativen Stämme als Mitglieder der Gattung Pseudomonas identifiziert werden. Die verbleibenden repräsentativen Stämme wurden den Gattungen Acinetobacter, Chryseobacterium, Stenotrophomonas und Commamonas zugeordnet. Wie gezeigt werden konnte, sind Gram-negative nicht fermentierende Bakterien im Umfeld eines Bienenvolkes weit verbreitet. Somit könnten weiterführende Untersuchungen hinsichtlich des antagonistischen Potenzials dieser Bakterien gegenüber verschiedenen Krankheitserregern bei Bienen vielversprechend sein.

Bakteriendiversität / PCR / Honig / Honigbienen / 16S rDNA Gen

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Loncaric.

Additional information

Manuscript editor: Peter Rosenkranz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loncaric, I., Ruppitsch, W., Licek, E. et al. Characterization of selected Gram-negative non-fermenting bacteria isolated from honey bees (Apis mellifera carnica). Apidologie 42, 312–325 (2011). https://doi.org/10.1007/s13592-011-0019-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13592-011-0019-7

Keywords

Navigation