Abstract
Senna is a diverse and paraphyletic genus in the subfamily Caesalpinioideae (Fabaceae Lindl.) comprising various species of industrial and medicinal value. To date, the genome-based taxonomic relationship among several Senna species remains enigmatic. Cytogenetic information is invaluable in deciphering phylogenetic relationships and evolutionary history. However, insufficient chromosomal research for many Senna species impedes comparative cytotaxonomic analyses aimed at understanding their genomic evolution. To provide additional Senna-related molecular cytogenetic information, we karyotyped 11 Senna species by employing triple-color fluorescence in situ hybridization using 5S rDNA, 45S rDNA, and Arabidopsis thaliana-type telomeric pre-labeled oligonucleotide probes. Chromosome numbers were predominantly 2n = 28, but 2n = 22 (S. marilandica) and 2n = 24 (S. uniflora) were also observed. While most species revealed only one interstitial 5S rDNA locus, except for S. uniflora which has two loci, a range of one to three 45S rDNA loci were detected at distal chromosomal regions. Additionally, we observed a hemizygous 45S rDNA locus in S. auriculata. In addition to chromosome termini, weak signals for telomeric repeats were found in interstitial regions in S. hirsuta, S. corymbosa, and S. alexandrina. These cytogenetic data can be integrated with molecular phylogenetic data for more comprehensive Senna cytotaxonomic analyses.
Similar content being viewed by others
References
Aksenova AY, Mirkin SM (2019) At the beginning of the end and in the middle of the beginning: structure and maintenance of telomeric DNA repeats and interstitial telomeric sequences. Genes 10:118. https://doi.org/10.3390/genes10020118
Al-Turki TA, Filfilan SA, Mehmood SF (2000) A cytological study of flowering plants from Saudi Arabia. Willdenowia 30:339–358. https://doi.org/10.3372/wi.30.30211
Baskin JM, Nan X, Baskin CC (1998) A comparative study of seed dormancy and germination in an annual and a perennial species of Senna (Fabaceae). Seed Sci Res 8:501–512. https://doi.org/10.1017/s0960258500004475
Biondo E, Miotto S, Schifino-Wittmann M, Castro B (2012) Cytogenetics and cytotaxonomy of Brazilian species of Senna Mill. (Cassieae–Caesalpinioideae–Leguminosae). Caryologia 58:152–163. https://doi.org/10.1080/00087114.2005.10589445
Chen L, Su D, Sun J, Li Z, Han Y (2020) Development of a set of chromosome-specific oligonucleotide markers and karyotype analysis in the Japanese morning glory Ipomoea nil. Sci Hortic 273:109633. https://doi.org/10.1016/j.scienta.2020.109633
Cordeiro JMP, Felix LP (2018) Intra- and interspecific karyotypic variations of the genus Senna Mill. (Fabaceae, Caesalpinioideae). Acta Bot Bras 32:128–134. https://doi.org/10.1590/0102-33062017abb0274
Freyman WA, Höhna S (2018) Cladogenetic and anagenetic models of chromosome number evolution: a Bayesian model averaging approach. Syst Biol 67:195–215. https://doi.org/10.1093/sysbio/syx065
Fuchs J, Brandes A, Schubert I (1995) Telomere sequence localization and karyotype evolution in higher-plants. Oesterr Bot Wochenbl 196:227–241. https://doi.org/10.1007/BF00982962
Guerra M (2008) Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenet Genome Res 120:339–350. https://doi.org/10.1159/000121083
He L, Liu J, Torres GA, Zhang H, Jiang J, Xie C (2013) Interstitial telomeric repeats are enriched in the centromeres of chromosomes in Solanum species. Chromosome Res 21:5–13. https://doi.org/10.1007/s10577-012-9332-x
Irwin HS, Turner BL (1960) Chromosomal relationships and taxonomic considerations in the genus Cassia. Am J Bot 47:309–318. https://doi.org/10.1002/j.1537-2197.1960.tb07130.x
Jo YK, Mazharul IMD, Kim CK, Kim HY, Lim KB (2019) Morphological characteristics and FISH analysis of Hibiscus F1 hybrids and parental lines. Hortic Sci Technol 37:630–639. https://doi.org/10.7235/HORT.20190063
Kang SH, Pandey RP, Lee CM, Sim JS, Jeong JT, Choi BS, Jung M, Ginzburg D, Zhao K, Won SY et al (2020) Genome-enabled discovery of anthraquinone biosynthesis in Senna tora. Nat Commun 11:5875. https://doi.org/10.1038/s41467-020-19681-1
Koo DH, Nam YW, Choi D, Bang JW, De Jong H, Hur Y (2010) Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences. Chromosome Res 18:325–336. https://doi.org/10.1007/s10577-010-9116-0
Lan T, Albert VA (2011) Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a lady’s slipper orchid. BMC Plant Biol 11:126. https://doi.org/10.1186/1471-2229-11-126
Levan A, Fredga K, Sandberg AA (2009) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x
Maluszynska J, Heslop-Harrison JS (1993) Physical mapping of rDNA loci in Brassica species. Genome 36:774–781. https://doi.org/10.1139/g93-102
Mancia FH, Sohn S-H, Ahn YK, Kim D-S, Kim JS, Kwon Y-S, Kim C-W, Lee T-H, Hwang Y (2015) Distribution of various types of repetitive DNAs in Allium cepa L. based on dual color FISH. Hortic Environ Biotechnol 56:793–799. https://doi.org/10.1007/s13580-015-1100-3
Mantovani M, Abel LD, Moreira-Filho O (2005) Conserved 5S and variable 45S rDNA chromosomal localisation revealed by FISH in Astyanax scabripinnis (Pisces, Characidae). Genetica 123:211–216. https://doi.org/10.1007/s10709-004-2281-3
Marazzi B, Endress PK, De Queiroz LP, Conti E (2006) Phylogenetic relationships within Senna (Leguminosae, Cassiinae) based on three chloroplast DNA regions: patterns in the evolution of floral symmetry and extrafloral nectaries. Am J Bot 93:288–303. https://doi.org/10.3732/ajb.93.2.288
Ohri D, Kumar A, Pal M (1986) Correlations between 2C DNA values and habit in Cassia (Leguminosae:Caesalpinioideae). Plant Syst Evol 153:223–227. https://doi.org/10.1007/BF00983689
Pellerin RJ, Waminal NE, Belandres HR, Kim HH (2018a) Karyotypes of three exotic Cucurbit species based on triple-color FISH analysis. Hortic Sci Technol 36:417–425. https://doi.org/10.12972/kjhst.20180041
Pellerin RJ, Waminal NE, Kim HH (2018b) Triple-color FISH karyotype analysis of four Korean wild Cucurbitaceae species. Hortic Sci Technol 36:98–107. https://doi.org/10.12972/kjhst.20180011
Pellerin RJ, Waminal NE, Kim HH (2019) FISH mapping of rDNA and telomeric repeats in 10 Senna species. Hortic Environ Biotechnol 60:253–260. https://doi.org/10.1007/s13580-018-0115-y
Peniton E, Waminal NE, Kim T-H, Kim HH (2019) FISH karyotype comparison between wild and cultivated perilla species using 5S and 45S rDNA probes. Plant Breed Biotechnol 7:237–244. https://doi.org/10.9787/PBB.2019.7.3.237
Peska V, Garcia S (2020) Origin, diversity, and evolution of telomere sequences in plants. Front Plant Sci 11:117. https://doi.org/10.3389/fpls.2020.00117
Rahman MO, Rahman MZ, Begum A (2013) Numerical taxonomy of the genus Senna Mill. from Bangladesh. Bangladesh J Plant Taxon 20:77–83. https://doi.org/10.3329/bjpt.v20i1.15467
Randell B (1970) Adaptations in the genetic system of Australian arid zone Cassia species (Leguminosae, Caesalpinioideae). Aust J Bot 18:77–97. https://doi.org/10.1071/BT9700077
Resende K, Prado C, Davide L, Torres G (2014) Polyploidy and apomixis in accessions of Senna rugosa (G.Don) H.S.Irwin & Barneby. Turk J Biol 38:510–515. https://doi.org/10.3906/biy-1312-66
Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, Salman-Minkov A, Mayzel J, Chay O, Mayrose I (2015) The chromosome counts database (CCDB) - a community resource of plant chromosome numbers. New Phytol 206:19–26. https://doi.org/10.1111/nph.13191
Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol Biol 12:225. https://doi.org/10.1186/1471-2148-12-225
Roa F, Guerra M (2015) Non-random distribution of 5S rDNA sites and its association with 45S rDNA in plant chromosomes. Cytogenet Genome Res 146:243–249. https://doi.org/10.1159/000440930
Rosato M, Álvarez I, Feliner GN, Rosselló JA (2018) Inter- and intraspecific hypervariability in interstitial telomeric-like repeats (TTTAGGG)n in Anacyclus (Asteraceae). Ann Bot 122:387–395. https://doi.org/10.1093/aob/mcy079
Ruiz-Herrera A, Nergadze SG, Santagostino M, Giulotto E (2008) Telomeric repeats far from the ends: mechanisms of origin and role in evolution. Cytogenet Genome Res 122:219–228. https://doi.org/10.1159/000167807
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089
Schubert I, Lysak MA (2011) Interpretation of karyotype evolution should consider chromosome structural constraints. Trends Genet 27:207–216. https://doi.org/10.1016/j.tig.2011.03.004
Schubert I, Rieger R, Fuchs J (1995) Alteration of basic chromosome numberby fusion–fission cycles. Genome 38:1289–1292. https://doi.org/10.1139/g95-170
Seijo JG, Fernández A (2003) Karyotype analysis and chromosome evolution in South American species of Lathyrus (Leguminosae). Am J Bot 90:980–987. https://doi.org/10.3732/ajb.90.7.980
Shchapova AI (2013) The diversity of lifecycles and their role in the evolution of basic chromosome numbers in various living species. Russ J Genet Appl Res 3:239–245. https://doi.org/10.1134/S2079059713040102
Silvestri MC, Ortiz AM, Robledo GA, Lavia GI (2020) Chromosome diversity in species of the genus Arachis, revealed by FISH and CMA/DAPI banding, and inferences about their karyotype differentiation. An Acad Bras Cienc 92:e20191364. https://doi.org/10.1590/0001-3765202020191364
Sousa A, Cusimano N, Renner SS (2014) Combining FISH and model-based predictions to understand chromosome evolution in Typhonium (Araceae). Ann Bot 113:669–680. https://doi.org/10.1093/aob/mct302
Souza M, Iseppon A (2004) Cytogenetics and chromosome banding patterns in Caesalpinioideae and Papilionioideae species of Pará, Amazonas, Brazil. Bot J Linn Soc 144:181–191. https://doi.org/10.1111/j.1095-8339.2003.00230.x
Souza G, Vanzela ALL, Crosa O, Guerra M (2016) Interstitial telomeric sites and Robertsonian translocations in species of Ipheion and Nothoscordum (Amaryllidaceae). Genetica 144:157–166. https://doi.org/10.1007/s10709-016-9886-1
Ta TD, Waminal NE, Nguyen TH, Pellerin RJ, Kim HH (2021) Comparative FISH analysis of Senna tora tandem repeats revealed insights into the chromosome dynamics in Senna. Genes Genom. https://doi.org/10.1007/s13258-021-01051-w
Uchida W, Matsunaga S, Sugiyama R, Kawano S (2002) Interstitial telomere-like repeats in the Arabidopsis thaliana genome. Genes Genet Syst 77:63–67. https://doi.org/10.1266/ggs.77.63
Vrána J, Simková H, Kubaláková M, Cíhalíková J, Doležel J (2012) Flow cytometric chromosome sorting in plants: the next generation. Methods 57:331–337. https://doi.org/10.1016/j.ymeth.2012.03.006
Waminal NE, Kim HH (2012) Dual-color FISH karyotype and rDNA distribution analyses on four Cucurbitaceae species. Hortic Environ Biotechnol 53:49–56. https://doi.org/10.1007/s13580-012-0105-4
Waminal NE, Perumal S, Lee J, Kim HH, Yang T-J (2016) Repeat evolution in Brassica rapa (AA), B. oleracea (CC), and B. napus (AACC) genomes. Plant Breed Biotech 4:107–122. https://doi.org/10.9787/PBB.2016.4.2.107
Waminal NE, Pellerin RJ, Kim N, Jayakodi M, Park JY, Yang TJ, Kim HH (2018) Rapid and efficient FISH using pre-labeled oligomer probes. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-26667-z
Waminal NE, Pellerin RJ, Kang S-H, Kim HH (2021) Chromosomal mapping of tandem repeats revealed massive chromosomal rearrangements and insights into Senna tora dysploidy. Front Plant Sci. https://doi.org/10.3389/fpls.2021.629898
Watanabe K, King RM, Yahara T, Ito M, Yokoyama J, Suzuki T, Crawford DJ (1995) Chromosomal cytology and evolution in Eupatorieae (Asteraceae). Ann Missouri Bot Gard 82:581–592. https://doi.org/10.2307/2399838
Watson J, Riha K (2010) Comparative biology of telomeres: where plants stand. FEBS Lett 584:3752–3759. https://doi.org/10.1016/j.febslet.2010.06.017
Winterfeld G, Ley A, Hoffmann MH, Paule J, Röser M (2020) Dysploidy and polyploidy trigger strong variation of chromosome numbers in the prayer-plant family (Marantaceae). Plant Syst Evol. https://doi.org/10.1007/s00606-020-01663-x
Wölk A, Winterfeld G, Röser M (2015) Genome evolution in a Mediterranean species complex: phylogeny and cytogenetics of Helictotrichon (Poaceae) allopolyploids based on nuclear DNA sequences (rDNA, topoisomerase gene) and FISH. Syst Biodivers 13:326–345. https://doi.org/10.1080/14772000.2015.1023867
Youn SM, Kim HH (2018) Chromosome karyotyping of Senna covesii and S. floribunda based on triple-color FISH mapping of rDNAs and telomeric repeats. Plant Breed Biotech 6:51–56. https://doi.org/10.9787/PBB.2018.6.1.51
Zhou HC, Pellerin RJ, Waminal NE, Yang T-J, Kim HH (2019a) Pre-labelled oligo probe-FISH karyotype analyses of four Araliaceae species using rDNA and telomeric repeat. Genes Genom 41:839–847. https://doi.org/10.1007/s13258-019-00786-x
Zhou HC, Waminal NE, Kim HH (2019b) In silico mining and FISH mapping of a chromosome-specific satellite DNA in Capsicum annuum L. Genes Genom 41:1001–1006. https://doi.org/10.1007/s13258-019-00832-8
Acknowledgements
This study was funded by projects (NRF 2017R1A2B2004778 and NRF 2020K1A3A1A39112373) from grants of the National Research Foundation of Korea.
Author information
Authors and Affiliations
Contributions
HHK is the supervisor and project administrator. THN and NEW carried out the experiments, analyzed the data, and wrote the original draft, reviewed, and edited the manuscript. DSL and RJP carried out the experiments, and reviewed and edited the manuscript. TDT, NBC, and BYK reviewed and edited the manuscript. All authors read and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interests
The authors declare that they have no conflicts of interest.
Additional information
Communicated by Cecile Segonzac.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Nguyen, T.H., Waminal, N.E., Lee, D.S. et al. Comparative triple-color FISH mapping in eleven Senna species using rDNA and telomeric repeat probes. Hortic. Environ. Biotechnol. 62, 927–935 (2021). https://doi.org/10.1007/s13580-021-00364-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13580-021-00364-9