Skip to main content

Colchicine-induced tetraploidy influences morphological and cytological characteristics and enhances accumulation of anthocyanins in a red-fleshed radish (Raphanus sativus L.)

Abstract

Red-fleshed radishes (RFRs) are economically important root vegetable in the Brassicaceae family that contain high concentrations of radish-red pigment in their fleshy root. However, the yield of the fleshy root is limited and germplasm resources for radish improvement are lacking. Genome doubling is an effective and efficient breeding tool for the rapid creation of new germplasm resources. Therefore, we aimed to induce tetraploidy in RFRs to improve pigment production. RFR seeds were immersed in aqueous colchicine (0, 0.01, 0.05, 0.10, 0.15, and 0.20% (w/v)) for 24 h followed by cultivation at 25℃ for 7 days, and those with uniform and distinctly swelled and short hypocotyls were selected as putative tetraploids. The putative tetraploids were identified by flow cytometry, and then we further examined the morphological and cytological characteristics of the diploid and tetraploid plants and measured gene expression via reverse transcription quantitative PCR. The results indicated that the most suitable concentration of colchicine (0.05% (w/v)) could induce tetraploidy in RFRs, with a tetraploid-induction rate as high as 34.50%. In addition, tetraploids exhibited a “gigantism” effect in both morphological and cytological traits, including swelled hypocotyls, thicker cotyledons, larger stoma, wider and longer leaves, taller plants, larger flowers, increased pollen size, larger seed pods and seeds, and a larger taproot. Moreover, compared with diploid plants, the pigment content and yield of pigment per plant of tetraploid plants were increased by 65.11% and 216.82%, respectively. Therefore, we present a simple and efficient method for tetraploid induction via soaking radish seeds in 0.05% (w/v) colchicine for 24 h. The results showed that tetraploid plants not only exhibited obvious “gigantism” effects but also significantly enhanced accumulation of anthocyanins, and represent a practical breeding material for improving pigment yield in RFRs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ambrose JC, Cyr R (2007) The kinesin ATK5 functions in early spindle assembly in Arabidopsis. Plant Cell 19:226–236. https://doi.org/10.1105/tpc.106.047613

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Blesso CN (2019) Dietary anthocyanins and human health. Nutrients 11:2107. https://doi.org/10.3390/nu11092107

    CAS  Article  PubMed Central  Google Scholar 

  3. Chen FB, Liu HF, Yao QL, Fang P, Lv FS (2015) Genetic variations and evolutionary relationships among radishes (Raphanus sativus L.) with different flesh colors based on red pigment content, karyotype, and simple sequence repeat analysis. Afr J Biotech 16:3270–3281. https://doi.org/10.5897/AJB2015.14911

    Article  Google Scholar 

  4. Chen FB, Xing CY, Huo SP, Cao CL, Yao QL, Fang P (2016) Red pigment content and expression of genes related to anthocyanin biosynthesis in radishes (Raphanus sativus L.) with different colored flesh. J Agri Sci 8:126–135. https://doi.org/10.5539/jas.v8n8p126

    Article  Google Scholar 

  5. Cohen H, Fait A, Tel-Zur N (2013) Morphological, cytological and metabolic consequences of autopolyploidization in Hylocereus (Cactaceae) species. BMC Plant Biol 13:173. https://doi.org/10.1186/1471-2229-13-173

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Dong Y, Hu G, Yu J, Thu SW, Grover CE, Zhu S, Wendel JF (2019) Salt tolerance diversity in diploid and polyploid cotton (Gossypium) species. Plant J 101:14580. https://doi.org/10.1111/tpj.14580

    CAS  Article  Google Scholar 

  7. Duan M, Wang J, Zhang X, Yang H, Wang H, Qiu Y, Song J, Guo Y, Li X (2017) Identification of optimal reference genes for expression analysis in radish (Raphanus sativus l.) and its relatives based on expression stability. Front Plant Sci 8:1605. https://doi.org/10.3389/fpls.2017.01605

    Article  PubMed  PubMed Central  Google Scholar 

  8. Guo X, Yang B, Tan J, Jiang J, Li D (2016) Associations of dietary intakes of anthocyanins and berry fruits with risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective cohort studies. Eur J Clin Nutr 70:1360–1367. https://doi.org/10.1038/ejcn.2016.142

    CAS  Article  PubMed  Google Scholar 

  9. Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504. https://doi.org/10.1016/S0031-9422(00)00235-1

    CAS  Article  PubMed  Google Scholar 

  10. Javadian N, Karimzadeh G, Moieni SMA, Behmanesh M (2017) In vitro polyploidy induction: changes in morphology, podophyllotoxin biosynthesis, and expression of the related genes in Linum album (Linaceae). Planta 245:1165–1178. https://doi.org/10.1007/s00425-017-2671-2

    CAS  Article  PubMed  Google Scholar 

  11. Khoo HE, Azlan A, Tang ST, Lim SM (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61:1361779. https://doi.org/10.1080/16546628.2017.1361779

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Kimble R, Keane KM, Lodge JK, Howatson G (2019) Dietary intake of anthocyanins and risk of cardiovasculardisease: a systematic review and meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr 59:3032–3043. https://doi.org/10.1080/10408398.2018.1509835

    CAS  Article  PubMed  Google Scholar 

  13. Landia M, Tattini M, Gouldc KS (2015) Multiple functional roles of anthocyanins in plant-environment interactions. Environ Exp Bot 119:4–17. https://doi.org/10.1016/j.envexpbot.2015.05.012

    CAS  Article  Google Scholar 

  14. Lavania UC, Srivastava S, Lavania S, Basu S, Misra NK, Mukai Y (2012) Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. Plant J 71:1–11. https://doi.org/10.1111/j.1365-313x.2012.05006.x

    Article  Google Scholar 

  15. Limera C, Wang K, Xu L, Wang Y, Zhu X, Feng H, Sha Y, Gong Y, Liu L (2016) Induction of autotetraploidy using colchicine and its identification in radish (Raphanus sativus L.). J Hortic Sci Biotechnol 91:63–70. https://doi.org/10.1080/14620316.2015.1110993

    CAS  Article  Google Scholar 

  16. Liu HF, Chen B (2019) Candidate genes in red pigment biosynthesis of a red-fleshed radish cultivar (Raphanus sativus L.) as revealed by transcriptome analysis. Biochemical Syst Ecol 86:103933. https://doi.org/10.1016/j.bse.2019.103933

    CAS  Article  Google Scholar 

  17. Lloyd A, Bomblies K (2016) Meiosis in autopolyploid and allopolyploid Arabidopsis. Curr Opin Plant Biol 30:116–122. https://doi.org/10.1016/j.pbi.2016.02.004

    Article  PubMed  Google Scholar 

  18. Lv FS, Tao HY, Tan GX, Zeng XX (2015) The characteristics of parents and seed production techniques of red radish “Yanzhihongyihao.” Shanxi Agri Sci 61:122–123 ((In China with English abstract))

    Google Scholar 

  19. Mach J (2019) Camelina: A history of polyploidy, chromosome shattering, and recovery. Plant Cell 31:2550–2551. https://doi.org/10.1105/tpc.19.00754

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Manolescu BN, Oprea E, Mititelu M, Ruta LL, Farcasanu IC (2019) Dietary anthocyanins and stroke: a review of pharmacokinetic and pharmacodynamic studies. Nutrients 11:1479. https://doi.org/10.3390/nu11071479

    CAS  Article  PubMed Central  Google Scholar 

  21. McCann D, Barrett A, Cooper A, Crumpler D, Dalen L, Grimshaw K, Kitchin E, Lok K, Porteous PE, Sonuga-Barke E, Warner JO, Stevenson J (2007) Food additives and hyperactive behaviour in 3-year-old and 8/9-yearold children in the community: a randomised, doubleblinded, placebo-controlled trial. Lancet 370:1560–1567. https://doi.org/10.1016/S0140-6736(07)61306-3

    CAS  Article  PubMed  Google Scholar 

  22. Mishra BK, Pathak S, Sharma A, Trivedi PK, Shukla S (2010) Modulated gene expression in newly synthesized auto-tetraploid of Papaver somniferum L. S Afr J Bot 76:447–452. https://doi.org/10.1016/j.sajb.2010.02.090

    CAS  Article  Google Scholar 

  23. Park CH, Baskar TB, Park SY, Kim SJ, Valan Arasu M, Al-Dhabi NA, Kim JK, Park SU (2016) Metabolic profiling and antioxidant assay of aetabolites from three radish cultivars (Raphanus sativus). Molecules 21:15. https://doi.org/10.3390/molecules21020157

    CAS  Article  Google Scholar 

  24. Pei Y, Yao N, He L, Deng DX, Li Wei, Zhang WP (2019) Comparative study of the morphological, physiological and molecular characteristics between diploid and tetraploid radish (Raphunas sativus L.). Sci Hortic-Amsterdam 257:108739. https://doi.org/10.1016/j.scienta.2019.108739

    CAS  Article  Google Scholar 

  25. Santos-Buelga C, Mateus N, De Freitas V (2014) Anthocyanins. plant pigments and beyond. J Agri Food Chem 62:6879–6884. https://doi.org/10.1021/jf501950s

    CAS  Article  Google Scholar 

  26. Sattler MC, Carvalho CR, Clarindo WR (2016) The polyploidy and its key role in plant breeding. Planta 243:281–296. https://doi.org/10.1007/s00425-015-2450-x

    CAS  Article  PubMed  Google Scholar 

  27. Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H (2006) Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s C T difference” formula. J Mol Med 84:901–910. https://doi.org/10.1007/s00109-006-0097-6

    CAS  Article  PubMed  Google Scholar 

  28. Tan FQ, Zhang M, Xie KD, Fan YJ, Song X, Wang WuXM, Zhang HY, Guo WW (2019) Polyploidy remodels fruit metabolism by modifying carbon source utilization and metabolic flux in Ponkan mandarin (Citrus reticulata Blanco). Plant Sci 289:110276. https://doi.org/10.1016/j.plantsci.2019.110276

    CAS  Article  PubMed  Google Scholar 

  29. Wang LZ, He QW (2005) Chinese radishes. Scientific and Technical Documents Publishing House, Beijing

    Google Scholar 

  30. Xiang ZX, Tang XL, Liu WH, Song CN (2019) A comparative morphological and transcriptomic study on autotetraploid Stevia rebaudiana (bertoni) and its diploid. Plant Physiol Biochem 143:154–164. https://doi.org/10.1016/j.plaphy.2019.09.003

    CAS  Article  PubMed  Google Scholar 

  31. Xing SH, Guo XB, Wang Q, Pan QF, Tian YS, Liu P, Zhao JY, Wang GF, Sun XF, Tang KX (2011) Induction and flow cytometry identification of tetraploids from seed-derived explants through colchicine treatments in Catharanthus roseus (L) G. Don. J Biomed Biotechnol 2011:793198. https://doi.org/10.1155/2011/793198

    Article  PubMed  Google Scholar 

  32. Yang J, Wang Z, Jiang Y, Fei S (2019) Editorial: Genetics and genomics of polyploid plants. Front Plant Sci 10:934. https://doi.org/10.3389/fpls.2019.00934

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yavari S, Omidbaigi R, Hassani ME (2011) The effects of induction of autotetraploidy on the essential oil content and compositions of dragonhead (Dracocephalum moldavica L). Jeobp 14:484–489. https://doi.org/10.1007/s00425-017-2671-2

    CAS  Article  Google Scholar 

  34. Zafar IM, Cheng MJ, Zhao YL, Wen XD, Zhang P, Zhang L, Ali A, Rong TZ, Tang QL (2018) Mysterious meiotic behavior of autopolyploid and allopolyploid maize. Comp Cytogenet 12:247–265. https://doi.org/10.3897/CompCytogen.v12i2.24907

    Article  Google Scholar 

  35. Zhang N, Bao Y, Xie ZL, Huang X, Sun YH, Feng G, Zeng HX, Ren J, Li YH, Xiong JS, Chen W, Yan C, Tang M (2019) Efficient characterization of tetraploid watermelon. Plants 8:419. https://doi.org/10.3390/plants8100419

    CAS  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by Special Project of Science and Technology Innovation for Social Undertaking and People’s Livelihood Guarantee of CSTC (No. cstc2017shms-xdny80074).

Author information

Affiliations

Authors

Contributions

FC and JG designed the study and wrote the manuscript. YL and ZP performed the experiments. PF and WL analyzed the data. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Fabo Chen.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Cecile Segonzac.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Gao, J., Li, W. et al. Colchicine-induced tetraploidy influences morphological and cytological characteristics and enhances accumulation of anthocyanins in a red-fleshed radish (Raphanus sativus L.). Hortic. Environ. Biotechnol. (2021). https://doi.org/10.1007/s13580-021-00363-w

Download citation

Keywords

  • Anthocyanin
  • Colchicine
  • RT-qPCR
  • Red-fleshed radish
  • Tetraploid