Biotechnological overview of agriculturally important endophytic fungi

Abstract

The many fascinating aspects of biotechnology in endophytic studies not only concern their interactions with plants but their potential as key players driving the synthesis of certain biomolecules that enhance plant growth, immunity, and protection against environmental stresses. A high microbial population inhabits the rhizosphere due to rhizodeposition and root exudate secretions. The rhizoplane forms a barrier that selectively screens the types of microorganisms infiltrating the root tissues with well-developed hyphae for successful colonization and establishment of endophytic communities within the plant tissues. Fungal endophytes contribute to the physiological and metabolic functions in the host plants, such as nutrient acquisition, nitrogen fixation, and control of plant pathogens. They also contribute to plant growth via complex mechanisms: mutualism or antagonism. The molecular methods of studying these endophytes have provided salient information for harnessing their potential for possible applications in improving agricultural productivity. Despite this, only a small fraction of endophytes have been isolated and explored. Hence, the metagenomic approach has revealed more insights into the endophytic structural diversity and functions for the detection of novel traits that can easily be genetically manipulated for various agricultural and industrial applications. Furthermore, biotechnological applications of biofertilizer from endophytic fungi help ensure a safe environment and aid in the development of agriculturally friendly processes for improved crop yields and productivity.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Adeleke BS, Babalola OO (2020) The endosphere microbial communities, a great promise in agriculture. Doi, Int Microbiol. https://doi.org/10.1007/s10123-020-00140-2

    Google Scholar 

  2. Akinola SA, Babalola OO (2020) The importance of adverse soil microbiomes in the light of omics: implications for food safety. Plant Soil Environ 66:421–430

    CAS  Article  Google Scholar 

  3. Ali S et al (2019) Endophytic fungi from Caralluma acutangula can secrete plant growth promoting enzymes. Fresenius Environ Bull 28:2688–2696

    CAS  Google Scholar 

  4. Almeida OG, De Martinis EC (2019) Bioinformatics tools to assess metagenomic data for applied microbiology. Appl Microbiol Biotechnol 103:69–82

    CAS  PubMed  Article  Google Scholar 

  5. Anwar W et al (2018) Entomopathogenic fungus Clonostachys rosea as a biocontrol agent against whitefly (Bemisia tabaci). Biocontr Sci Technol 28:750–760

    Article  Google Scholar 

  6. Arora P, Wani ZA, Ahmad T, Sultan P, Gupta S, Riyaz-Ul-Hassan S (2019) Community structure, spatial distribution, diversity and functional characterization of culturable endophytic fungi associated with Glycyrrhiza glabra L. Fungal Biol 123:373–383. https://doi.org/10.1016/j.funbio.2019.02.003

    Article  PubMed  Google Scholar 

  7. Aslam MM, Karanja J, Bello SK (2019) Piriformospora indica colonization reprograms plants to improved P-uptake, enhanced crop performance, and biotic/abiotic stress tolerance. Physiol Mol Plant Pathol 106:232–237

    CAS  Article  Google Scholar 

  8. Bamisile BS et al (2018) Prospects of endophytic fungal entomopathogens as biocontrol and plant growth promoting agents: an insight on how artificial inoculation methods affect endophytic colonization of host plants. Microbiol Res 217:34–50. https://doi.org/10.1016/j.micres.2018.08.016

    Article  PubMed  Google Scholar 

  9. Becker Y, Green K, Scott B, Becker M (2018) Artificial inoculation of Epichloë festucae into Lolium perenne, and visualization of endophytic and epiphyllous fungal growth. Bio-Protocol 8:e2990

    CAS  Google Scholar 

  10. Bien S, Damm U (2020) Prunus trees in Germany—a hideout of unknown fungi? Mycol Progress 19:667–690

    Article  Google Scholar 

  11. Bilal S et al (2018) Endophytic microbial consortia of phytohormones-producing fungus Paecilomyces formosus LHL10 and bacteria Sphingomonas sp. LK11 to Glycine max L. regulates physio-hormonal changes to attenuate aluminum and zinc stresses. Front Plant Sci 9:1273

    PubMed  PubMed Central  Article  Google Scholar 

  12. Bonito G, Hameed K, Ventura R, Krishnan J, Schadt CW, Vilgalys R (2016) Isolating a functionally relevant guild of fungi from the root microbiome of Populus. Fungal Ecol 22:35–42. https://doi.org/10.1016/j.funeco.2016.04.007

    Article  Google Scholar 

  13. Cagnano G, Roulund N, Jensen CS, Forte FP, Asp T, Leuchtmann A (2019) Large scale screening of Epichloë endophytes infecting Schedonorus pratensis and other forage grasses reveals a relation between microsatellite–based haplotypes and loline alkaloid levels. Front Plant Sci 10:765

    PubMed  PubMed Central  Article  Google Scholar 

  14. Calhim S, Halme P, Petersen JH, Læssøe T, Bässler C, Heilmann-Clausen J (2018) Fungal spore diversity reflects substrate-specific deposition challenges. Sci Rep 8:1–9

    CAS  Article  Google Scholar 

  15. Choi S-S, Katsuyama Y, Bai L, Deng Z, Ohnishi Y, Kim E-S (2018) Genome engineering for microbial natural product discovery. Curr Opin Microbiol 45:53–60. https://doi.org/10.1016/j.mib.2018.02.007

    CAS  Article  PubMed  Google Scholar 

  16. Chutulo EC, Chalannavar RK (2018) Endophytic mycoflora and their bioactive compounds from Azadirachta indica: a comprehensive review. J Fungi 4:42

    Article  CAS  Google Scholar 

  17. Ciura J, Kruk J (2018) Phytohormones as targets for improving plant productivity and stress tolerance. J Plant Physiol 229:32–40. https://doi.org/10.1016/j.jplph.2018.06.013

    CAS  Article  PubMed  Google Scholar 

  18. Dissanayake AJ et al (2018) Direct comparison of culture-dependent and culture-independent molecular approaches reveal the diversity of fungal endophytic communities in stems of grapevine (Vitis vinifera). Fungal Diversity 90:85–107

    Article  Google Scholar 

  19. Fadiji AE, Babalola OO (2020a) Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front Bioeng Biotechnol 8:467

    PubMed  PubMed Central  Article  Google Scholar 

  20. Fadiji AE, Babalola OO (2020b) Metagenomics methods for the study of plant-associated microbial communities: a review. J Microbiological Methods 170:105860

    CAS  Article  Google Scholar 

  21. Ferreira MC et al (2017) Antimycobacterial and antimalarial activities of endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from Brazil. Memórias do Instituto Oswaldo Cruz 112:692–697

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Florea S, Schardl CL, Hollin W (2015) Detection and isolation of Epichloë species, fungal endophytes of grasses. Curr Protocols Microbiol 38:19

    Article  Google Scholar 

  23. Fouda AH, Hassan SE-D, Eid AM, Ewais EE-D (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann Agric Sci 60:95–104

    Article  Google Scholar 

  24. Gałązka A, Grządziel J (2018) Fungal genetics and functional diversity of microbial communities in the soil under long-term monoculture of maize using different cultivation techniques. Front Microbiol 9:76

    PubMed  PubMed Central  Article  Google Scholar 

  25. Gange AC, Koricheva J, Currie AF, Jaber LR, Vidal S (2019) Meta-analysis of the role of entomopathogenic and unspecialized fungal endophytes as plant bodyguards. New Phytol 223:2002–2010

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Ganugi P, Masoni A, Pietramellara G, Benedettelli S (2019) A review of studies from the last twenty years on plant–arbuscular mycorrhizal fungi associations and their uses for wheat crops. Agronomy 9:840

    CAS  Article  Google Scholar 

  27. Ghorbanpour M, Omidvari M, Abbaszadeh-Dahaji P, Omidvar R, Kariman K (2018) Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol Control 117:147–157. https://doi.org/10.1016/j.biocontrol.2017.11.006

    Article  Google Scholar 

  28. Gomes T, Pereira JA, Benhadi J, Lino-Neto T, Baptista P (2018) Endophytic and epiphytic phyllosphere fungal communities are shaped by different environmental factors in a Mediterranean ecosystem. Microbial Ecol 76:668–679

    Article  Google Scholar 

  29. Górzyńska K, Ryszka P, Anielska T, Turnau K, Lembicz M (2017) Effect of Epichloë typhina fungal endophyte on the diversity and incidence of other fungi in Puccinellia distans wild grass seeds. Flora 228:60–64

    Article  Google Scholar 

  30. Gupta P, Vakhlu J, Sharma YP, Imchen M, Kumavath R (2020) Metagenomic insights into the fungal assemblages of the northwest Himalayan cold desert. Extremophiles 24:749–758

    CAS  PubMed  Article  Google Scholar 

  31. Hardoim PR et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    PubMed  PubMed Central  Article  Google Scholar 

  32. Hettiarachchige IK et al (2019) Genetic modification of asexual Epichloë endophytes with the perA gene for peramine biosynthesis. Mol Gen Genomics 294:315–328

    CAS  Article  Google Scholar 

  33. Hettiarachchige IK et al (2020) Generation of Epichloë strains expressing fluorescent proteins suitable for studying host-endophyte interactions and characterisation of a T-DNA integration event. Microorganisms 8:54

    CAS  Article  Google Scholar 

  34. Hiruma K, Kobae Y, Toju H (2018) Beneficial associations between Brassicaceae plants and fungal endophytes under nutrient-limiting conditions: evolutionary origins and host–symbiont molecular mechanisms. Curr Opinion Plant Biol 44:145–154. https://doi.org/10.1016/j.pbi.2018.04.009

    CAS  Article  Google Scholar 

  35. Hou L, He X, Li X, Wang S, Zhao L (2019) Species composition and colonization of dark septate endophytes are affected by host plant species and soil depth in the Mu Us sandland, northwest China. Fungal Ecol 39:276–284. https://doi.org/10.1016/j.funeco.2019.01.001

    Article  Google Scholar 

  36. Hu L et al (2018a) Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun 9:2738

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. Hu X, Zhou S, He Y, Liao M, Chen Y, Chen Z (2018b) Growth promoting function and application of Paecilomyces lilacinus in tobacco production. Southwest China J Agric Sci 31:973–979

    Google Scholar 

  38. Igiehon NO, Babalola OO (2017) Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl Microbiol Biotechnol 101:4871–4881

    CAS  PubMed  Article  Google Scholar 

  39. Ikechi-Nwogu C, Okene F (2019) Molecular characterization of fungi associated with stored soybean (Glycine max L.) seeds. Nig J Biotechnol 36:33–44

    Google Scholar 

  40. Ismaila AH, Qadira M, Husnaa MI, Ahmadb A, Hamayuna M (2018) Endophytic fungi isolated from Citrullus colocynthesl leaves and their potential for secretion of indole acetic acid and gibberellin. J Appl Environ Biol Sci 8:80–84

    Google Scholar 

  41. Jaber LR, Ownley BH (2018) Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol Control 116:36–45. https://doi.org/10.1016/j.biocontrol.2017.01.018

    Article  Google Scholar 

  42. Jia Q, Qu J, Mu H, Sun H, Wu C (2020) Foliar endophytic fungi: diversity in species and functions in forest ecosystems. Symbiosis 80:103–138

    CAS  Article  Google Scholar 

  43. Kaur J, Kaur R, Datta R, Kaur S, Kaur A (2018) Exploration of insecticidal potential of an alpha glucosidase enzyme inhibitor from an endophytic Exophiala spinifera. J Appl Microbiol 125:1455–1465

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. Khan AR et al (2017) Culturable endophytic fungal diversity in the cadmium hyperaccumulator Solanum nigrum L. and their role in enhancing phytoremediation. Environ Exp Bot 135:126–135

    CAS  Article  Google Scholar 

  45. Kia SH, Pallesch S, Piepenbring M, Maciá-Vicente JG (2019) Root endophytic fungi show low levels of interspecific competition in planta. Fungal Ecol 39:184–191. https://doi.org/10.1016/j.funeco.2019.02.009

    Article  Google Scholar 

  46. Kiarie S, Nyasani JO, Gohole LS, Maniania NK, Subramanian S (2020) Impact of fungal endophyte colonization of maize (Zea mays L.) on induced resistance to Thrips-and Aphid-transmitted viruses. Plants 9:416

    CAS  PubMed Central  Article  Google Scholar 

  47. Korenblum E, Aharoni A (2019) Phytobiome metabolism: beneficial soil microbes steer crop plants’ secondary metabolism. Pest Manage Sci 75:2378–2384

    CAS  Google Scholar 

  48. Kotoky R, Rajkumari J, Pandey P (2018) The rhizosphere microbiome: significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. J Environ Manage 217:858–870. https://doi.org/10.1016/j.jenvman.2018.04.022

    CAS  Article  PubMed  Google Scholar 

  49. Krell V, Unger S, Jakobs-Schoenwandt D, Patel AV (2018) Endophytic Metarhizium brunneum mitigates nutrient deficits in potato and improves plant productivity and vitality. Fungal Ecol 34:43–49

    Article  Google Scholar 

  50. LaBonte NR, Jacobs J, Ebrahimi A, Lawson S, Woeste K (2018) Data mining for discovery of endophytic and epiphytic fungal diversity in short-read genomic data from deciduous trees. Fungal Ecol 35:1–9. https://doi.org/10.1016/j.funeco.2018.04.004

    Article  Google Scholar 

  51. Li J-L, Sun X, Zheng Y, Lü P-P, Wang Y-L, Guo L-D (2020) Diversity and community of culturable endophytic fungi from stems and roots of desert halophytes in northwest China. MycoKeys 62:75

    PubMed  PubMed Central  Article  Google Scholar 

  52. Lou J et al (2019) Metagenomic sequencing reveals microbial gene catalogue of phosphinothricin-utilized soils in South China. Gene 711:143942. https://doi.org/10.1016/j.gene.2019.143942

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Lugtenberg BJ, Caradus JR, Johnson LJ (2016) Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol 92:192

    Article  CAS  Google Scholar 

  54. Maheshwari R, Bhutani N, Bhardwaj A, Suneja P (2019) Functional diversity of cultivable endophytes from Cicer arietinum and Pisum sativum: bioprospecting their plant growth potential. Biocatal Agric Biotechnol 20:101229. https://doi.org/10.1016/j.bcab.2019.101229

    Article  Google Scholar 

  55. Maia NdC et al (2018) Fungal endophytes of Panicum maximum and Pennisetum purpureum: isolation, identification, and determination of antifungal potential. Revista Brasileira de Zootecnia 47:e20170183

    Article  Google Scholar 

  56. Maina U, Galadima I, Gambo F, Zakaria D (2018) A review on the use of entomopathogenic fungi in the management of insect pests of field crops. J Entomol Zool Studies 6:27–32

    Google Scholar 

  57. Malinowski DP, Belesky DP (2019) Epichloë (formerly Neotyphodium) fungal endophytes increase adaptation of cool-season perennial grasses to environmental stresses. Acta Agrobot 72:1767

    Article  Google Scholar 

  58. Martínez-Diz MdP, Andrés-Sodupe M, Bujanda R, Díaz-Losada E, Eichmeier A, Gramaje D (2019) Soil-plant compartments affect fungal microbiome diversity and composition in grapevine. Fungal Ecol 41:234–244. https://doi.org/10.1016/j.funeco.2019.07.003

    Article  Google Scholar 

  59. Beltrán-Nambo MdlA, Martínez-Trujillo M, Montero-Castro JC, Salgado-Garciglia R, Otero-Ospina JT, Carreón-Abud Y (2018) Fungal diversity in the roots of four epiphytic orchids endemic to Southwest Mexico is related to the breadth of plant distribution. Rhizosphere 7:49–56. https://doi.org/10.1016/j.rhisph.2018.07.001

    Article  Google Scholar 

  60. Mehmood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Khan N (2019a) In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis 77:225–235

    CAS  Article  Google Scholar 

  61. Mehmood A et al (2019b) Cinnamic acid as an inhibitor of growth, flavonoids exudation and endophytic fungus colonization in maize root. Plant Physiol Biochem 135:61–68. https://doi.org/10.1016/j.plaphy.2018.11.029

    CAS  Article  PubMed  Google Scholar 

  62. Mejía LC et al (2014) Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front Microbiol 5:479

    PubMed  PubMed Central  Google Scholar 

  63. Mishra A et al (2018) Endophyte-mediated modulation of defense-related genes and systemic resistance in Withania somnifera (L.) Dunal under Alternaria alternata stress. Appl Environ Microbiol 84:1–13

    Article  Google Scholar 

  64. Mitter B et al (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 4:120

    PubMed  PubMed Central  Article  Google Scholar 

  65. Mohammad Golam Dastogeer K, Oshita Y, Yasuda M, Kanasugi M, Matsuura E, Xu Q, Okazaki S (2020) Host specificity of endophytic fungi from stem tissue of nature farming tomato (Solanum lycopersicum Mill.) in Japan. Agronomy 10:1019

    Article  CAS  Google Scholar 

  66. Mukherjee A, Singh B, Verma JP (2020) Harnessing chickpea (Cicer arietinum L.) seed endophytes for enhancing plant growth attributes and bio-controlling against Fusarium sp. Microbiol Res 237:126469

    CAS  PubMed  Article  Google Scholar 

  67. Naik K, Mishra S, Srichandan H, Singh PK, Sarangi PK (2019) Plant growth promoting microbes: potential link to sustainable agriculture and environment. Biocat Agric Biotechnol 21:101326. https://doi.org/10.1016/j.bcab.2019.101326

    Article  Google Scholar 

  68. Nayak S, Samanta S, Mukherjee AK (2020) Beneficial role of Aspergillus sp. in agricultural soil and environment. Front Soil Environ Microbiol 3:17–36

    Article  Google Scholar 

  69. Nefzi A, Abdallah RAB, Jabnoun-Khiareddine H, Ammar N, Daami-Remadi M (2019) Ability of endophytic fungi associated with Withania somnifera L. to control Fusarium crown and root rot and to promote growth in tomato. Braz J Microbiol 50:481–494

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Omomowo OI, Babalola OO (2019) Bacterial and fungal endophytes: tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microorganisms 7:481

    PubMed Central  Article  PubMed  Google Scholar 

  71. Parmar S et al (2018) Endophytic fungal community of Dysphania ambrosioides from two heavy metal-contaminated sites: evaluated by culture-dependent and culture-independent approaches. Microbial Biotechnol 11:1170–1183

    CAS  Article  Google Scholar 

  72. Patel JK, Madaan S, Archana G (2018) Antibiotic producing endophytic Streptomyces spp. colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogen-challenged cereal crops. Microbiol Res 215:36–45

    CAS  PubMed  Article  Google Scholar 

  73. Potshangbam M, Devi SI, Sahoo D, Strobel GA (2017) Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Front Microbiol 8:325

    PubMed  PubMed Central  Article  Google Scholar 

  74. Qian X et al (2019) Leaf and root endospheres harbor lower fungal diversity and less complex fungal co-occurrence patterns than rhizosphere. Front Microbiol 10:1015

    PubMed  PubMed Central  Article  Google Scholar 

  75. Rajini SB, Nandhini M, Udayashankar AC, Niranjana SR, Lund OS, Prakash HS (2020) Diversity, plant growth-promoting traits, and biocontrol potential of fungal endophytes of Sorghum bicolor. Plant Pathol 69:642–654

    CAS  Article  Google Scholar 

  76. Rho H, Hsieh M, Kandel SL, Cantillo J, Doty SL, Kim S-H (2018) Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes. Microbial Ecol 75:407–418

    Article  Google Scholar 

  77. Romano I, Ventorino V, Pepe O (2020) Effectiveness of plant beneficial microbes: overview of the methodological approaches for the assessment of root colonization and persistence. Front Plant Sci 11:6

    PubMed  PubMed Central  Article  Google Scholar 

  78. Rostami S, Azhdarpoor A (2019) The application of plant growth regulators to improve phytoremediation of contaminated soils: a review. Chemosphere 220:818–827. https://doi.org/10.1016/j.chemosphere.2018.12.203

    CAS  Article  PubMed  Google Scholar 

  79. Sadeghi F, Samsampour D, Seyahooei MA, Bagheri A, Soltani J (2020) Fungal endophytes alleviate drought-induced oxidative stress in mandarin (Citrus reticulata L.): toward regulating the ascorbate–glutathione cycle. Sci Hortic 261:108991

    CAS  Article  Google Scholar 

  80. Salazar-Cerezo S, Martínez-Montiel N, García-Sánchez J, Pérez-y-Terrón R, Martínez-Contreras RD (2018) Gibberellin biosynthesis and metabolism: a convergent route for plants, fungi and bacteria. Microbiol Res 208:85–98

    CAS  PubMed  Article  Google Scholar 

  81. Scott B, Takemoto D, Tanaka A (2007) Fungal endophyte production of reactive oxygen species is critical for maintaining the mutualistic symbiotic interaction between Epichloë festucae and perennial ryegrass. Plant Signal Behav 2:171–173

    PubMed  PubMed Central  Article  Google Scholar 

  82. Shymanovich T, Faeth SH (2019) Environmental factors affect the distribution of two Epichloë fungal endophyte species inhabiting a common host grove bluegrass (Poa alsodes). Ecol Evol 9:6624–6642

    PubMed  PubMed Central  Google Scholar 

  83. Sibanda EP, Mabandla M, Chisango T, Nhidza AF, Mduluza T (2018) Endophytic fungi from Vitex payos: identification and bioactivity. Acta Mycol 53:1111

    Article  Google Scholar 

  84. Skiada V, Faccio A, Kavroulakis N, Genre A, Bonfante P, Papadopoulou KK (2019) Colonization of legumes by an endophytic Fusarium solani strain FsK reveals common features to symbionts or pathogens. Fungal Gen Biol 127:60–74. https://doi.org/10.1016/j.fgb.2019.03.003

    Article  Google Scholar 

  85. Sultana T, Bashar M, Shamsi S (2020) Pathogenic potentiality of fungi isolated from seeds of Twenty BRRI released rice varieties (Oryza sativa L.). Biores Commun 6:810–814

    Google Scholar 

  86. Taghinasab M, Jabaji S (2020) Cannabis microbiome and the role of endophytes in modulating the production of secondary metabolites: an overview. Microorganisms 8:355

    CAS  PubMed Central  Article  Google Scholar 

  87. Taufiq M, Darah I (2018) Fungal endophytes isolated from the leaves of a medicinal plant, Ocimum sanctum Linn and evaluation of their antimicrobial activities. Afr J Microbiol Res 12:616–622

    CAS  Article  Google Scholar 

  88. Toghueo RMK, Boyom FF (2020) Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications. Biotechnol 10:107

    Google Scholar 

  89. Vidal S, Jaber LR (2015) Entomopathogenic fungi as endophytes: plant-endophyte-herbivore interactions and prospects for use in biological control. Curr Sci 46–54

  90. Vurukonda SSKP, Giovanardi D, Stefani E (2018) Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Mol Sci 19:952

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  91. Woźniak M, Grządziel J, Gałązka A, Frąc M (2019) Metagenomic analysis of bacterial and fungal community composition associated with Paulownia elongate × Paulownia fortunei. BioRes 14:8511–8529

    Article  CAS  Google Scholar 

  92. Xia C, Li N, Zhang Y, Li C, Zhang X, Nan Z (2018) Role of Epichloë endophytes in defense responses of cool-season grasses to pathogens: a review. Plant Dis 102:2061–2073

    PubMed  Article  PubMed Central  Google Scholar 

  93. Xing M et al (2018) Antifungal activity of natural volatile organic compounds against litchi downy blight pathogen Peronophythora litchii. Mol 23:358

    Article  CAS  Google Scholar 

  94. Xu T et al (2019) The antifungal action mode of the rice endophyte Streptomyces hygroscopicus OsiSh-2 as a potential biocontrol agent against the rice blast pathogen. Pesticide Biochem Physiol 160:58–69

    CAS  Article  Google Scholar 

  95. Yokoya K, Postel S, Fang R, Sarasan V (2017) Endophytic fungal diversity of Fragaria vesca, a crop wild relative of strawberry, along environmental gradients within a small geographical area. PeerJ 5:e2860

    PubMed  PubMed Central  Article  Google Scholar 

  96. Zakaria L, Aziz WNW (2018) Molecular identification of endophytic fungi from banana leaves (Musa spp.). Tropical Life Sci Res 29:201

    Article  Google Scholar 

  97. Zhou Y et al (2019) Effects of endophyte infection on the competitive ability of Achnatherum sibiricum depend on endophyte species and nitrogen availability. J Plant Ecol 12:815–824

    Article  Google Scholar 

  98. Zida E et al (2014) Fungal endophytes of sorghum in Burkina Faso: occurrence and distribution. Afr J Microbiol Res 8:3782–3793

    Google Scholar 

Download references

Acknowledgements

Bartholomew Saanu Adeleke thanked the National Research Foundation of South Africa/The World Academy of Sciences (NRF-TWAS) African Renaissance Ph.D. scholarship (Ref: UID: 116100) for giving him a stipend. Olubukola Oluranti Babalola acknowledges NRF for the Grant (UID: 123634) that supports research in her laboratory.

Funding

This study was funded by the National Research Foundation of South Africa (UID: 123634) to O.O.B.

Author information

Affiliations

Authors

Contributions

Both authors contributed equally.

Corresponding author

Correspondence to Olubukola Oluranti Babalola.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Seon-In Yeom, Ph.D.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adeleke, B.S., Babalola, O.O. Biotechnological overview of agriculturally important endophytic fungi. Hortic. Environ. Biotechnol. (2021). https://doi.org/10.1007/s13580-021-00334-1

Download citation

Keywords

  • Agricultural productivity
  • Endosphere
  • Fungal ecology
  • Metagenomics
  • Microbiomes