Effect of wild watermelon rootstocks and water stress on chemical properties of watermelon fruit

Abstract

Drought is one of the most important abiotic factors that restrict the production of agricultural plants. An effective way to avoid the negative effects of drought on crops is to cultivate high-yielding varieties by grafting them onto drought-tolerant rootstocks with a strong root system. For this purpose, five different plant materials were used: wild watermelon rootstock, i.e., wild watermelon (A1 and A2), open-pollinated Lagenaria siceraria (gourd) rootstocks (A3), Cucurbita maxima Duchesne × Cucurbita moschata Duchesne (TZ-148) F1 watermelon rootstocks (A4), and the ungrafted control. Five different irrigation depths were applied considering irrigation water (IW)/cumulative pan evaporation (CPE) rations (I100: 1.0 IW/CPE, I75:0.75 IW/CPE, I50:0.50 IW/CPE, I35:0.35 IW/CPE, and I0:rain-fed). The results showed that the use of rootstock and water stress increased the rate of sugar content in the fruit. The highest positive relationship was found between glucose and total sugar, whereas the highest negative relationship was observed between sucrose and malic acid. Parameters such as glucose, total sugar, and citric acid showed significant changes in drought stress. Fructose and malic acid showed significant differences between the rootstocks. Principal Component Analysis (PCA) revealed that the A2I50 application was located in the positive region of both components and showed important results in these parameters. The TZ148 rootstock contributed significantly to the quality of watermelon. In addition, the A2 wild watermelon rootstock showed respectable results, especially under water stress conditions. Based on these results, we conclude that the use of wild watermelon rootstock will contribute to the fruit quality in arid and semi-arid areas with limited water resources.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Adeolu AT, Enesi DO (2013) Assessment of proximate, mineral, vitamin and phytochemical compositions of plantain (Musa paradisiaca) bract–an agricultural waste. Int R J Plant Sci 4:192–197

    Google Scholar 

  2. Akbulut M, Özcan MM, Çoklar H (2009) Evaluation of antioxidant activity, phenolic, mineral contents and some physicochemical properties of several pine honeys collected from Western Anatolia. Int J Food Sci Nutr 60:577–589. https://doi.org/10.3109/09637480801892486

    CAS  Article  PubMed  Google Scholar 

  3. Alan O, Sen F, Duzyaman E (2018) The effectiveness of growth cycles on improving fruit quality for grafted watermelon combinations. Food Sci Technol 38:270–277. https://doi.org/10.1590/1678-457x.20817

    Article  Google Scholar 

  4. Amarowicz R (2011) Lycopene as a natural antioxidant. Eur J Lipid Sci Technol 113:675–677. https://doi.org/10.1002/ejlt.201100157

    CAS  Article  Google Scholar 

  5. Aslam A, Zhao S, Azam M, Lu X, He N, Li B, Dou J, Zhu H, Liu W (2020) Comparative analysis of primary metabolites and transcriptome changes between ungrafted and pumpkin-grafted watermelon during fruit development. PeerJ 8:e8259. https://doi.org/10.7717/peerj.8259

    Article  PubMed  PubMed Central  Google Scholar 

  6. Balkaya A, Güngör B, Sarıbaş Ş, Yıldız S (2018) Determination of the effects of pumpkin rootstock on yield and fruit quality in mini watermelon cultivation. YYU J Agr Sci 28:237–246

    Google Scholar 

  7. Bianchi G, Rizzolo A, Grassi M, Provenzi L, Scalzo RL (2018) External maturity indicators, carotenoid and sugar compositions andvolatile patterns in‘Cuoredolce®’and‘Rugby’mini-watermelon (Citrullus lanatus (Thunb) Matsumura & Nakai) varieties in relation of ripening degreeat harvest. Postharvest Biol Technol 136:1–11. https://doi.org/10.1016/j.postharvbio.2017.09.009

    CAS  Article  Google Scholar 

  8. Bordonaba JG, Terry LA (2010) Manipulating the taste-related composition of strawberry fruits (Fragaria ananassa) from different cultivars using deficit irrigation. Food Chem 122:1020–1026. https://doi.org/10.1016/j.foodchem.2010.03.060

    CAS  Article  Google Scholar 

  9. Chávez-Mendoza C, Sánchez E, Carvajal-Millán E, Muñoz-Márquez E, Guevara-Aguilar A (2013) Characterization of the nutraceutical quality and antioxidant activity in bell pepper in response to grafting. Molecules 18:15689–15703. https://doi.org/10.3390/molecules181215689

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Chen GL, Chen SG, Zhao YY, Luo CX, Li J, Gao YQ (2014) Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Ind Crops Prod 57:150–157. https://doi.org/10.1016/j.indcrop.2014.03.018

    CAS  Article  Google Scholar 

  11. Chrost B, Schmitz K (1997) Changes in soluble sugar and activity of α-galactosidases and acid invertase during muskmelon (Cucumis melo L.) fruit development. J Plant Physiol 151:41–50. https://doi.org/10.1016/S0176-1617(97)80034-X

    CAS  Article  Google Scholar 

  12. Coklar H, Akbulut M, Alhassan I, Kirpitci Ş, Korkmaz E (2018) Organic acids, sugars, phenolic compounds and antioxidant activity of Malus floribunda coccinella fruit, peel and flesh. Acta Scientiarum Polonorum Hortorum Cultus. https://doi.org/10.24326/asphc.2018.5.5

    Article  Google Scholar 

  13. Davis AR, Perkins-Veazie P (2005) Rootstock effects on plant vigor and watermelon fruit quality. Cucurbit Genet Coop Rep 28–29:39–42

    Google Scholar 

  14. Evrenosoğlu Y, Alan Ö, Özdemir N (2010) Leaf phenolic content of some squash rootstocks used on watermelon (Citrullus lanatus (thunb.) Matsum and Nakai) growing and phenolic accumulation on grafted cultivar. African J Agric Res 5:732–737. https://doi.org/10.5897/ajar09.776

    Article  Google Scholar 

  15. FAOSTAT (2019) http://www.fao.org/faostat/en/#data/QC. Accessed 18 Sep 2019

  16. Fredes A, Roselló S, Beltrán J, Cebolla-Cornejo J, Pérez-de-Castro A, Gisbert C, Picó MB (2017) Fruit quality assessment of watermelons grafted onto citron melon rootstock. J Sci Food Agric 97:1646–1655. https://doi.org/10.1002/jsfa.7915

    CAS  Article  PubMed  Google Scholar 

  17. García-Sánchez F, Syvertsen JP, Gimeno V, Botía P, Perez-Perez JG (2007) Responses to flooding and drought stress by two citrus rootstock seedlings with different water-use efficiency. Physiol Plant 130:532–542. https://doi.org/10.1111/j.1399-3054.2007.00925.x

    CAS  Article  Google Scholar 

  18. Gerster H (1997) The potential role of lycopene for human health. J Am Coll Nutr 16:109–126. https://doi.org/10.1080/07315724.1997.10718661

    CAS  Article  PubMed  Google Scholar 

  19. Gharibi S, Tabatabaei BES, Saeidi G, Goli SAH (2016) Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Appl Biochem Biotechnol 178:796–809. https://doi.org/10.1007/s12010-015-1909-3

    CAS  Article  PubMed  Google Scholar 

  20. Gölükcü M, Tokgöz H (2018) Variation in sugar, organic acid and volatile flavor compounds of watermelon (Citrullus lanatus) grafted on different rootstocks at different harvest time. Akademik Gıda 16:381–386. https://doi.org/10.24323/akademik-gida.505503

    Article  Google Scholar 

  21. Han GM, Meza JL, Soliman GA, Islam KMM, Watanabe-Galloway S (2016) Higher levels of serum lycopene are associated with reduced mortality in individuals with metabolic syndrome. Nutr Res 36:402–407. https://doi.org/10.1016/j.nutres.2016.01.003

    CAS  Article  PubMed  Google Scholar 

  22. Jogaiah S, Ramteke SD, Sharma J, Upadhyay AK (2014) Moisture and salinity stress induced changes in biochemical constituents and water relations of different grape rootstock cultivars. Int J Agron. https://doi.org/10.1155/2014/789087

    Article  Google Scholar 

  23. Kirnak H, Higgs D, Kaya C, Tas I (2005) Effects of irrigationand nitrogen rates on growth, yield, and quality of muskmelon in semiarid regions. J Plant Nutr 28:621–638. https://doi.org/10.1081/PLN-200052635

    CAS  Article  Google Scholar 

  24. Kyriacou MC, Leskovar DI, Colla G, Rouphael Y (2018) Watermelon and melon fruit quality: the genotypic and agro-environmental factors implicated. Sci Hortic 234:393–408. https://doi.org/10.1016/j.scienta.2018.01.032

    Article  Google Scholar 

  25. Leskovar DI, Bang H, Crosby KM, Maness N, Franco JA, Perkins-Veazie P (2004) Lycopene, carbohydrates, ascorbic acid and yield components of diploid and triploid watermelon cultivars are affected by deficit irrigation. J Hortic Sci Biotechnol 79:75–81. https://doi.org/10.1080/14620316.2004.11511739

    CAS  Article  Google Scholar 

  26. Levi A, Thomas CE, Wehner TC, Zhang X (2001) Low genetic diversity indicates the need to broaden the genetic base of cultivated watermelon. Hort Sci 36:1096–1101. https://doi.org/10.21273/HORTSCI.36.6.1096

    CAS  Article  Google Scholar 

  27. Liu C, Zhang H, Dai Z, Liu X, Liu Y, Deng X, Chen F, Xu J (2012) Volatile chemical and carotenoid in watermelons [Citrullus vulgaris (Thunb.) Schrad (Cucurbitaceae)] with different flesh colors. Food Sci Biotechnol 21:531–541. https://doi.org/10.1007/s10068-012-0068-3

    CAS  Article  Google Scholar 

  28. López Marín J, Gonzalez A, Pérez-Alfocea F, Egea-Gilabert C, Fernandez JA (2013) Grafting is an efficient alternative to shading screen to alleviate thermal stress in greenhouse-grown sweet pepper. Sci Hortic 149:39–46. https://doi.org/10.1016/j.scienta.2012.02.034

    Article  Google Scholar 

  29. Ma B, Chen J, Zheng H, Fang T, Ogutu C, Li S, Han Y, Wu B (2015) Comparative assessment of sugar and malic acid composition in cultivated and wild apples. Food Chem 172:86–91. https://doi.org/10.1016/j.foodchem.2014.09.032

    CAS  Article  PubMed  Google Scholar 

  30. Masayuki O, Masaya M, Genjiro M (2005) Water transfer at graft union of tomato plants grafted onto solanum rootstocks. J Jpn Soc Hor Sci 74:458–463

    Article  Google Scholar 

  31. Mo Y, Yang R, Liu L, Gu X, Yang X, Wang Y, Zhang X, Li H (2016) Growth, photosynthesis and adaptive responses of wild and domesticated watermelon genotypes to drought stress and subsequent re-watering. Plant Growth Reg 79:229–241. https://doi.org/10.1007/s10725-015-0128-9

    CAS  Article  Google Scholar 

  32. Naderi S, Fakheri BA, Maali-Amiri R, Mahdinezhad N (2020) Tolerance responses in wheat landrace Bolani are related to enhanced metabolic adjustments under drought stress. Plant Physiol Biochem 150:244–253. https://doi.org/10.1016/j.plaphy.2020.03.002

    CAS  Article  PubMed  Google Scholar 

  33. Ngwepe RM, Mashilo J, Shimelis H (2019) Progress in genetic improvement of citron watermelon (Citrullus lanatus var. citroides): a review. Gen Resour Crop Evol 66:735–758. https://doi.org/10.1007/s10722-018-0724-4(012

    CAS  Article  Google Scholar 

  34. Ough CS, Amerine MA (1988) Methods for analysis of musts and wines. Wiley, New York

    Google Scholar 

  35. Özdemir AE, Çandır E, Yetişir H, Aras V, Arslan Ö, Baltaer Ö, Üstün D, Ünlü M (2018) Rootstocks affected postharvest performance of grafted ‘Crisby’ and ‘Crimson Tide’ watermelon cultivars. Tarım Bilimleri Dergisi 24:453–462

    Google Scholar 

  36. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Dubash NK (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, p 151. Ipcc

  37. Parida AK, Das AB, Sanada Y, Mohanty P (2004) Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquat Bot 80:77–87. https://doi.org/10.1016/j.aquabot.2004.07.005

    CAS  Article  Google Scholar 

  38. Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S, Bianchi M, Brighnti F (2003) Total antioxidant capacity of plant foods, beverages and oils consumedin Italy assessed by three different in vitro assays. J Nutr 133:2812–2819. https://doi.org/10.1093/jn/133.9.2812

    CAS  Article  PubMed  Google Scholar 

  39. Proietti S, Rouphael Y, Colla G, Cardarelli M, Agazio MD, Zacchini M, Rea E, Moscatello S, Battistelli A (2008) Fruit quality of mini-watermelonas affected by grafting and irrigation regimes. J Sci Food Agric 88:1107–1114. https://doi.org/10.1002/jsfa.3207

    CAS  Article  Google Scholar 

  40. Qaryouti M, Qawasmi W, Hamdan H, Edwan M (2007) Tomato fruit yield and quality as affected by grafting and growing system. Acta Hort 741:199–206

    CAS  Article  Google Scholar 

  41. Saraiva KR, De Araujo TV, Bezerra FML, Costa SC, Gondim RS (2017) Regulated deficit irrigation and different mulch types on fruit quality and yield of watermelon. Rev Caatinga 30:437–446. https://doi.org/10.1590/1983-21252017v30n219rc

    Article  Google Scholar 

  42. Sarker U, Oba S (2018) Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable. BMC Plant Biol 18:258. https://doi.org/10.1186/s12870-018-1484-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Seymen M, Yavuz D, Dursun A, Kurtar ES, Türkmen Ö (2019) Identification of drought-tolerant pumpkin (Cucurbita pepo L.) genotypes associated with certain fruit characteristics, seed yield, and quality. Agric Water Manag 221:150–159. https://doi.org/10.1016/j.agwat.2019.05.009

    Article  Google Scholar 

  44. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-hosphotungstic acid reagents. Curr Cont 16:144–158

    CAS  Google Scholar 

  45. Siracusa L, Gresta F, Sperlinga E, Ruberto G (2017) Effect of sowing time and soil water content on grain yield and phenolic profile of four buckwheat (Fagopyrum esculentum Moench.) varieties in a Mediterranean environment. J Food Compos Anal 62:1–7. https://doi.org/10.1016/j.jfca.2017.04.005

    CAS  Article  Google Scholar 

  46. Soteriou GA, Kyriacou MC, Siomos AS, Gerasopoulos D (2014) Evolution of watermelon fruit physicochemical and phytochemical composition during ripening as affected by grafting. Food Chem 165:282–289. https://doi.org/10.1016/j.foodchem.2014.04.120

    CAS  Article  PubMed  Google Scholar 

  47. Soteriou GA, Siomos AS, Gerasopoulos D, Rouphael Y, Giorgiadou S, Kyriacou MC (2017) Biochemical and histological contributions to textural changes in watermelon fruit modulated by grafting. Food Chem 237:133–140. https://doi.org/10.1016/j.foodchem.2017.05.083

    CAS  Article  PubMed  Google Scholar 

  48. Stepansky A, Kovalski I, Schaffer AA, Perl-Treves R (1999) Variation in sugar levels and invertase activity in mature fruit representing a broad spectrum of Cucumis melo genotypes. Genet Resour Crop Evol 46:53–62

    Article  Google Scholar 

  49. Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL (2009) Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 70:1329–1344. https://doi.org/10.1016/j.phytochem.2009.08.006

    CAS  Article  PubMed  Google Scholar 

  50. Tlili I, Hdider C, Lenucci MS, Riadh I, Jebari H, Dalessandro G (2011) Bioactive compounds and antioxidant activities of different watermelon (Citrullus lanatus (Thunb.) Mansfeld) cultivars as affected by fruit sampling area. J Food Compos Anal 24:307–314. https://doi.org/10.1016/j.jfca.2010.06.005

    CAS  Article  Google Scholar 

  51. TUIK (2019) https://biruni.tuik.gov.tr/medas/?kn=104&locale=tr. Accessed 17 Sep 2019

  52. Turhan A, Ozmen N, Kuscu H, Serbeci MS, Seniz V (2012) Influence of rootstocks on yield and fruit characteristics and quality of watermelon. Hortic Environ Biotechnol 53:336–341

    CAS  Article  Google Scholar 

  53. Yassin H, Hussen S (2015) Reiview on role of grafting on yield and quality of selected fruit vegetables. Global J Sci Front Res Agric Veterin 15:1–16

    Google Scholar 

  54. Yativ M, Harary I, Wolf S (2010) Sucrose accumulation in watermelon fruits: genetic variation and biochemical analysis. J Plant Physiol 167:589–596. https://doi.org/10.1016/j.jplph.2009.11.009

    CAS  Article  PubMed  Google Scholar 

  55. Yavuz D, Seymen M, Yavuz N, Türkmen Ö (2015) Effects of irrigation interval and quantity on the yield and quality of confectionary pumpkin grown under field conditions. Agric Water Manag 159:290–298. https://doi.org/10.1016/j.agwat.2015.06.025

    Article  Google Scholar 

  56. Yavuz D, Seymen M, Süheri S, Yavuz N, Türkmen Ö, Kurtar ES (2020) How do rootstocks of citron watermelon (Citrullus lanatus var. citroides) affect the yield and quality of watermelon under deficit irrigation? Agric Water Manag 241:106351. https://doi.org/10.1016/j.agwat.2020.106351

    Article  Google Scholar 

  57. Yetisir H, Sarı N (2003) Effect of different rootstock on plant growth, yield and quality of watermelon. Aust J Exp Agric 43:1269–1274

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Scientific Research Projects Coordination Office of Selcuk University, Turkey (Project No.18401007).

Author information

Affiliations

Authors

Contributions

MS, ESK and ÖT performed the experiments, developing the methodology and preparing the manuscript; DY, NY and SS irrigation levels application and design the experiment; ME, MA and HÇ laboratory studies.

Corresponding author

Correspondence to Musa Seymen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Sung Kyeom Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seymen, M., Yavuz, D., Ercan, M. et al. Effect of wild watermelon rootstocks and water stress on chemical properties of watermelon fruit. Hortic. Environ. Biotechnol. (2021). https://doi.org/10.1007/s13580-020-00329-4

Download citation

Keywords

  • Citron watermelon
  • Deficit irrigation
  • Organic acid
  • Phenolic content
  • Sugar content