Skip to main content
Log in

Role of zinc oxide nanoparticles in the management of disease complex of beetroot (Beta vulgaris L.) caused by Pectobacterium betavasculorum, Meloidogyne incognita and Rhizoctonia solani

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

The impact of zinc oxide nanoparticles (ZnO NPs) in 100 and 200 mg L−1 concentrations was examined on the hatching and mortality of M. incognita (Mi) and the growth of P. betavasculorum (Pb) and R. solani (Rs) under in vitro conditions. ZnO NPs inhibited the hatching and caused mortality of 2nd stage juveniles (J2s) of Mi and also inhibited the growth of Pb and Rs. In pot experiments, ZnO NPs in 100 and 200 mg L−1 concentrations were delivered as a foliar spray and seed priming for the management of disease complex of beetroot. Foliar spray of ZnO NPs to plants infected with pathogens or un-infected more efficiently improved plant dry mass and physiological and biochemical parameters of beetroot than seed priming. Foliar spray of ZnO NPs at 200 mg L−1 to plants infected with pathogens resulted in the greatest increase in plant dry mass, and physiological and biochemical parameters of beetroot. Seed priming and foliar spray of ZnO NPs caused a reduction in disease indices, nematode population, and root galling. Foliar spray of ZnO NPs at 200 mg L−1 caused the maximum reduction in disease indices, nematode multiplication, and root galling. The inductively coupled plasma mass spectrometry (ICP-MS) analysis revealed that ZnO NPs were accumulated in shoots and roots of both infected and uninfected plants independent of the application methodology. Overall, the findings suggest that ZnO NPs as the foliar spray has the potential for the management of root-knot, soft-rot, and root-rot, disease complex of beetroot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 105. Elsevier, Amsterdam, pp 114–121

    Google Scholar 

  • Ahanger MA, Agarwal R, Tomar NS, Shrivastava M (2015) Potassium induces positive changes in nitrogen metabolism and antioxidant system of oat (Avena sativa L. cultivar Kent). J Plant Interact 10:211–223

    Google Scholar 

  • Arciniegas-Grijalba P, Patiño-Portela M, Mosquera-Sánchez L, Guerrero-Vargas J, Rodríguez-Páez J (2017) ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl Nanosci 7:225–241

    CAS  Google Scholar 

  • Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. In: Maret W (ed) Zinc biochemistry, physiology, and homeostasis. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3728-9_6

    Chapter  Google Scholar 

  • Beyer WF Jr, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    CAS  PubMed  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    CAS  PubMed  Google Scholar 

  • Cakmak I (2000) Tansley review no. 111: possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    CAS  PubMed  Google Scholar 

  • Chen L, Chen C, Wang P, Song T (2017) Mechanisms of cellular effects directly induced by magnetic nanoparticles under magnetic fields. J Nanomater. https://doi.org/10.1155/2017/1564634

    Article  Google Scholar 

  • Clifford T, Howatson G, West DJ, Stevenson EJ (2015) The potential benefits of red beetroot supplementation in health and disease. Nutrients 7:2801–2822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dale AL, Lowry GV, Casman EA (2015) Stream dynamics and chemical transformations control the environmental fate of silver and zinc oxide nanoparticles in a watershed-scale model. Environ Sci Technol 49:7285–7293

    CAS  PubMed  Google Scholar 

  • Debona D, Rodrigues FÁ, Rios JA, Nascimento KJT (2012) Biochemical changes in the leaves of wheat plants infected by Pyricularia oryzae. Phytopathology 102:1121–1129

    CAS  PubMed  Google Scholar 

  • Derbalah A, Shenashen M, Hamza A, Mohamed A, El Safty S (2018) Antifungal activity of fabricated mesoporous silica nanoparticles against early blight of tomato. EJBAS 5:145–150

    Google Scholar 

  • Dias MC, Santos C, Pinto G, Silva AM, Silva S (2019) Titanium dioxide nanoparticles impaired both photochemical and non-photochemical phases of photosynthesis in wheat. Protoplasma 256:69–78

    CAS  PubMed  Google Scholar 

  • Dimkpa CO, Bindraban PS (2017) Nanofertilizers: new products for the industry? J Agric Food Chem 66:6462–6473

    PubMed  Google Scholar 

  • Eisenback J (1986) A comparison of techniques useful for preparing nematodes for scanning electron microscopy. J Nematol 18:479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elmer WH, White JC (2016) The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ Sci Nano 3:1072–1079

    CAS  Google Scholar 

  • Elsharkawy M, Derbalah A, Hamza A, El-Shaer A (2018) Zinc oxide nanostructures as a control strategy of bacterial speck of tomato caused by Pseudomonas syringae in Egypt. Environ Sci Pollut Res 27:19049–19057

    Google Scholar 

  • Faizan M, Faraz A, Yusuf M, Khan S, Hayat S (2018) Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 56:678–686

    CAS  Google Scholar 

  • Fang M, Chen JH, Xu XL, Yang PH, Hildebrand HF (2006) Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int J Antimicrob Agents 27:513–517

    CAS  PubMed  Google Scholar 

  • Fones H, Preston GM (2013) The impact of transition metals on bacterial plant disease. FEMS Microbiol Rev 37:495–519

    CAS  PubMed  Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20. https://doi.org/10.3389/fenvs.2016.00020

    Article  Google Scholar 

  • Ghanepour S, Shakiba MR, Toorchi M, Oustan S (2015) Role of Zn nutrition in membrane stability, leaf hydration status, and growth of common bean grown under soil moisture stress. JBES 6:9–20

    Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    CAS  PubMed  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792

    CAS  PubMed  Google Scholar 

  • Gupta S, Kushwah T, Vishwakarma A, Yadav S (2015) Optimization of ZnO-Nano-particles to investigate their safe application by assessing their effect on soil nematode Caenorhabditis elegans. Nanoscale Res Lett 10:303

    PubMed Central  Google Scholar 

  • Harveson RM, Hanson LE, Hein GL (2009) Compendium of beet diseases and pests, vol edn 2. American Phytopathological Society, APS Press, p 140

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    CAS  PubMed  Google Scholar 

  • Helfenstein J, Pawlowski ML, Hill CB, Stewart J, Lagos-Kutz D, Bowen CR et al (2015) Zinc deficiency alters soybean susceptibility to pathogens and pests. J Plant Nutr Soil Sci 178:896–903

    CAS  Google Scholar 

  • Hou J, Wu Y, Li X, Wei B, Li S, Wang X (2018) Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere 193:852–860

    CAS  PubMed  Google Scholar 

  • Jamdagni P, Rana JS, Khatri P, Nehra K (2018) Comparative account of antifungal activity of green and chemically synthesized zinc oxide nanoparticles in combination with agricultural fungicides. Int J Nano Dimens 9:198–208

    CAS  Google Scholar 

  • Khan M, Siddiqui ZA (2018) Zinc oxide nanoparticles for the management of Ralstonia solanacearum, Phomopsis vexans and Meloidogyne incognita incited disease complex of eggplant. Indian Phytopathol 71:355–364

    Google Scholar 

  • Khan MR, Siddiqui ZA (2019) Potential of Pseudomonas putida, Bacillus subtilis, and their mixture on the management of Meloidogyne incognita, Pectobacterium betavasculorum, and Rhizoctonia solani disease complex of beetroot (Beta vulgaris L.). Egypt J Biol Pest Co29:73. https://doi.org/10.1186/s41938-019-0174-0

    Article  Google Scholar 

  • Khan MR, Siddiqui ZA (2020) Use of silicon dioxide nanoparticles for the management of Meloidogyne incognita, Pectobacterium betavasculorum and Rhizoctonia solani disease complex of beetroot (Beta vulgaris L.). Sci Hortic 265:109211

    CAS  Google Scholar 

  • Kim HS, Thammarat P, Lommel SA, Hogan CS, Charkowski AO (2011) Pectobacterium carotovorum elicits plant cell death with DspE/F but the P. carotovorum DspE does not suppress callose or induce expression of plant genes early in plant–microbe interactions. Mol Plant Microb Interact 24:773–786

    CAS  Google Scholar 

  • Latef AAHA, Alhmad MFA, Abdelfattah KE (2017) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul 36:60–70

    Google Scholar 

  • Laurenti M, Canavese G, Sacco A, Fontana M, Bejtka K, Castellino M et al (2015) Nanobranched ZnO structure: p-type doping induces piezoelectric voltage generation and ferroelectric–photovoltaic effect. Adv Mater 27:4218–4223

    CAS  PubMed  Google Scholar 

  • Lin J, Gong D, Zhu S, Zhang L, Zhang L (2011) Expression of PPO and POD genes and contents of polyphenolic compounds in harvested mango fruits in relation to Benzothiadiazole-induced defense against anthracnose. Sci Hortic 130:85–89

    CAS  Google Scholar 

  • Lipovsky A, Nitzan Y, Gedanken A, Lubart R (2011) Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury. Nanotechnology 22:105101

    PubMed  Google Scholar 

  • Mahdieh M, Sangi MR, Bamdad F, Ghanem A (2018) Effect of seed and foliar application of nano-zinc oxide, zinc chelate, and zinc sulphate rates on yield and growth of pinto bean (Phaseolus vulgaris) cultivars. J Plant Nutr 41:2401–2412

    CAS  Google Scholar 

  • Mashela P (2017) Interrelations between commercial beetroot (Beta vulgaris) cultivars and Meloidogyne species. Acta Agric Scand B Soil Plant Sci 67:164–168

    Google Scholar 

  • Nandhini M, Rajini S, Udayashankar A, Niranjana S, Lund OS, Shetty H et al (2019) Biofabricated zinc oxide nanoparticles as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. Crop Prot 121:103–112

    CAS  Google Scholar 

  • Pallas JA, Paiva NL, Lamb C, Dixon RA (1996) Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. Plant J 10:281–293

    CAS  Google Scholar 

  • Peng C, Zhang W, Gao H, Li Y, Tong X, Li K et al (2017) Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments. Nanomaterials 7:21. https://doi.org/10.3390/nano7010021

    Article  CAS  PubMed Central  Google Scholar 

  • Pethybridge SJ, Kikkert JR, Hanson LE, Nelson SC (2018) Challenges and prospects for building resilient disease management strategies and tactics for the New York table beet industry. Agron 8:112

    CAS  Google Scholar 

  • Poschenrieder C, Tolrà R, Barceló J (2006) Can metals defend plants against biotic stress? Trends Plant Sci 11:288–295

    CAS  PubMed  Google Scholar 

  • Prasad T, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR et al (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927

    CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Pullagurala VLR, Adisa IO, Rawat S, Kalagara S, Hernandez-Viezcas JA, Peralta-Videa JR et al (2018) ZnO nanoparticles increase photosynthetic pigments and decrease lipid peroxidation in soil grown cilantro (Coriandrum sativum). Plant Physiol Biochem 132:120–127

    Google Scholar 

  • Rai M, Ingle AP, Paralikar P, Anasane N, Gade R, Ingle P (2018) Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: emerging role of nanotechnology. Appl Microbiol Biotechnol 102:6827–6839

    CAS  PubMed  Google Scholar 

  • Raliya R, Nair R, Chavalmane S, Wang W-N, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7:1584–1594

    CAS  PubMed  Google Scholar 

  • Reed RB, Ladner DA, Higgins CP, Westerhoff P, Ranville JF (2012) Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ Toxicol Chem 31:93–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A et al (2019) Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269–277

    CAS  PubMed  Google Scholar 

  • Sávoly Z, Hrács K, Pemmer B, Streli C, Záray G, Nagy PI (2016) Uptake and toxicity of nano-ZnO in the plant-feeding nematode, Xiphinema vuittenezi: the role of dissolved zinc and nanoparticle-specific effects. Environ Sci Pollut Res 23:9669–9678

    Google Scholar 

  • Siddiqui Z, Khan A, Khan M, Abd-Allah E (2018) Effects of zinc oxide nanoparticles (ZnO NPs) and some plant pathogens on the growth and nodulation of lentil (Lens culinaris Medik.). Acta Phytopathol Entomol Hung 53:195–211

    CAS  Google Scholar 

  • Siddiqui ZA, Khan MR, Abd_Allah EF, Parveen A (2019a) Titanium dioxide and zinc oxide nanoparticles affect some bacterial diseases, and growth and physiological changes of beetroot. Int J Veg Sci 25:409–430

    Google Scholar 

  • Siddiqui ZA, Parveen A, Ahmad L, Hashem A (2019b) Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Sci Hortic 249:374–382

    CAS  Google Scholar 

  • Singh A, Singh N, Afzal S, Singh T, Hussain I (2018) Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J Mater Sci 53:185–201

    CAS  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM et al (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Micro Lett 7:219–242

    CAS  Google Scholar 

  • Sneath PH, Sokal RR (1973) Numerical taxonomy. The principles and practice of numerical classification. W. H. Freeman and Company, San Francisco, p 573

  • Southey JF (1986) Laboratory methods for work with plant and soil nematodes: HMSO, p 202

  • Surendra T, Roopan SM, Al-Dhabi NA, Arasu MV, Sarkar G, Suthindhiran K (2016) Vegetable peel waste for the production of ZnO nanoparticles and its toxicological efficiency, antifungal, hemolytic, and antibacterial activities. Nanoscale Res Lett 11:546. https://doi.org/10.1186/s11671-016-1750-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian S, Wan Y, Qin G, Xu Y (2006) Induction of defense responses against Alternaria rot by different elicitors in harvested pear fruit. Appl Microbiol Biotechnol 70:729–734

    CAS  PubMed  Google Scholar 

  • Tirani MM, Haghjou MM, Ismaili A (2019) Hydroponic grown tobacco plants respond to zinc oxide nanoparticles and bulk sprays by morphological, physiological and anatomical adjustments. Funct Plant Biol 46:360–375

    Google Scholar 

  • Vulić JJ, Ćebović TN, Čanadanović-Brunet JM, Ćetković GS, Čanadanović VM, Djilas SM et al (2014) In vivo and in vitro antioxidant effects of beetroot pomace extracts. J Funct Foods 6:168–175

    Google Scholar 

  • Wang WN, Tarafdar JC, Biswas P (2013) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15:1417. https://doi.org/10.1007/s11051-013-1417-8

    Article  CAS  Google Scholar 

  • Wootton-Beard PC, Ryan L (2011) A beetroot juice shot is a significant and convenient source of bioaccessible antioxidants. J Funct Foods 3:329–334

    CAS  Google Scholar 

  • Wruss J, Waldenberger G, Huemer S, Uygun P, Lanzerstorfer P, Müller U et al (2015) Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. J Food Compos Anal 42:46–55

    CAS  Google Scholar 

  • Yu C, Zeng L, Sheng K, Chen F, Zhou T, Zheng X et al (2014) γ-Aminobutyric acid induces resistance against Penicillium expansum by priming of defence responses in pear fruit. Food Chem 159:29–37

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the University Sophisticated Instrumentation Facility (USIF), Aligarh Muslim University (AMU), Aligarh, for Scanning Electron Microscopy (SEM), and Central Research Facility (CRF), Indian Institute of Technology (IIT), Delhi, for Inductively-Coupled Mass Spectrometry (ICP-MS).

Funding

This study did not receive any specific Grant from funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

MRK conducted the experiments, analyzed the data, and wrote the manuscript. ZAS designed the experiments, edited the paper, and supervised the overall work.

Corresponding author

Correspondence to Zaki A. Siddiqui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Cecile Segonzac.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.R., Siddiqui, Z.A. Role of zinc oxide nanoparticles in the management of disease complex of beetroot (Beta vulgaris L.) caused by Pectobacterium betavasculorum, Meloidogyne incognita and Rhizoctonia solani. Hortic. Environ. Biotechnol. 62, 225–241 (2021). https://doi.org/10.1007/s13580-020-00312-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-020-00312-z

Keywords

Navigation