Skip to main content
Log in

Tomato hairless on stems mutant affects trichome development

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Trichomes are hair-like structures derived from plant epidermal cells. Trichomes exist in most plant species and are categorized as either glandular or non-glandular. Glandular trichomes function as chemical protection against herbivores, while non-glandular trichomes serve as physical barriers to various biotic and environmental stresses. Here, we describe a novel recessive mutation named hairless on stems (host) which was identified based on the absence of trichomes on stems. host plants exhibited lower density of trichomes on leaves, stems, and hypocotyls, compared with the wild-type (WT) plants. Types I, III, and V trichomes, especially, were not developed at all on the stems of the host plants. In addition to trichome initiation, the length of Type I trichomes was shorter in the host plants than in the WT plants. The growth of host plants under greenhouse conditions showed that the mutant has shorter stems and fewer leaves than the WT plants. Genetic mapping of the host locus using the map-based cloning approach positioned the locus within 4.4 cM interval flanked by markers, Solyc09g074280 and Solyc09g075360, on chromosome 9. The identification of the Host gene will provide a clue for understanding multicellular trichome development in tomato and the Host gene can be used as a useful genetic resource to develop insect-resistant tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe M, Katsumata H, Komeda Y, Takahashi T (2003) Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development 130:635–643

    CAS  PubMed  Google Scholar 

  • Bleeker PM, Mirabella R, Diergaarde PJ, VanDoorn A, Tissier A, Kant MR, Prins M, de Vos M, Haring MA, Schuurink RC (2012) Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. P Natl Acad Sci USA 109:20124–20129

    CAS  Google Scholar 

  • Brembu T, Winge P, Seem M, Bones AM (2004) NAPP and PIRP encode subunit of a putative Wave regulatory protein complex involved in plant cell morphogenesis. Plant Cell 16:2335–2349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang J, Yu T, Yang QH, Li CX, Xiong C, Gao SH, Xie QM, Zheng FY, Li HX, Tian ZD, Yang CX, Ye ZB (2018) Hair, encoding a single C2H2 zinc-finger protein, regulates multicellular trichome formation in tomato. Plant J 96:90–102

    CAS  PubMed  Google Scholar 

  • Cho KS, Kwon M, Cho JH, Im JS, Park YE, Hong SY, Hwang IT, Kang JH (2017) Characterization of trichome morphology and aphid resistance in cultivated and wild species of potato. Hortic Environ Biotechnol 58:450–457

    Google Scholar 

  • Clauss MJ, Dietel S, Schubert G, Mitchell-Olds T (2006) Glucosinolate and trichome defenses in a natural Arabidopsis lyrata population. J Chem Ecol 32:2351–2373

    CAS  PubMed  Google Scholar 

  • Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101

    CAS  PubMed  Google Scholar 

  • El-Assall SE, Le J, Basu D, Mallery EL, Szymanski DB (2004) DISTORTED2 encodes an ARPC2 subunit of the putative Arabidopsis ARP2/3 complex. Plant J 38:526–538

    Google Scholar 

  • Gan YB, Kumimoto R, Liu C, Ratcliffe O, Yu H, Broun P (2006) Glabrous inflorescence stems modulates the regulation by gibberellins of epidermal differentiation and shoot maturation in Arabidopsis. Plant Cell 18:1383–1395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gan YB, Liu C, Yu H, Broun P (2007) Integration of cytokinin and gibberellin signalling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate. Development 134:2073–2081

    CAS  PubMed  Google Scholar 

  • Glover BJ, Perez-Rodriguez M, Martin C (1998) Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor. Development 125:3497–3508

    CAS  PubMed  Google Scholar 

  • Handley R, Ekborm B, Agreen J (2005) Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecol Entomol 30:284–292

    Google Scholar 

  • Jeong NR, Kim H, Hwang IT, Howe GA, Kang JH (2017) Genetic analysis of the tomato inquieta mutant links the ARP2/3 complex to trichome development. J Plant Biol 60:582–592

    CAS  Google Scholar 

  • Juvik JA, Shapiro JA, Young TE, Mutschler MA (1994) Acylglucoses from wild tomatoes alter behavior and reduce growth and survival of Helicoverpa zea and Spodoptera exigua (Lepidoptera, Noctuidae). J Econ Entomol 87:482–492

    CAS  Google Scholar 

  • Kang JH, Liu GH, Shi F, Jones AD, Beaudry RM, Howe GA (2010a) The tomato odorless-2 mutant is defective in trichome-based production of diverse specialized metabolites and broad-spectrum resistance to insect herbivores. Plant Physiol 154:262–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JH, Shi F, Jones AD, Marks MD, Howe GA (2010b) Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. J Exp Bot 61:1053–1064

    CAS  PubMed  Google Scholar 

  • Kang JH, McRoberts J, Shi F, Moreno JE, Jones AD, Howe GA (2014) The flavonoid biosynthetic enzyme chalcone isomerase modulates terpenoid production in glandular trichomes of tomato. Plant Physiol 164:1161–1174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JH, Campos ML, Zemelis-Durfee S, Al-Haddad JM, Jones AD, Telewski FW, Brandizzi F, Howe GA (2016) Molecular cloning of the tomato Hairless gene implicates actin dynamics in trichome-mediated defense and mechanical properties of stem tissue. J Exp Bot 67:5313–5324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy GG (2003) Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Annu Rev Entomol 48:51–72

    CAS  PubMed  Google Scholar 

  • Le J, El-Assal SED, Basu D, Saad ME, Szymanski DB (2003) Requirements for Arabidopsis ATARP2 and ATARP3 during epidermal development. Curr Biol 13:1341–1347

    CAS  PubMed  Google Scholar 

  • Li QY, Yin M, Li YP, Fan CC, Yang QY, Wu J, Zhang CY, Wang H, Zhou YM (2015) Expression of Brassica napus TTG2, a regulator of trichome development, increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes. J Exp Bot 66:5821–5836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liakoura V, Stefanou M, Manetas Y, Cholevas C, Karabourniotis G (1997) Trichome density and its UV-B protective potential are affected by shading and leaf position on the canopy. Environ Exp Bot 38:223–229

    Google Scholar 

  • Liu CG, Jun JH, Dixon RA (2014) MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in Medicago truncatula. Plant Physiol 165:1424–1439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luckwill LC (1943) The genus Lycopersicon: a historical, biological and taxonomic survey of the wild and cultivated tomatoes. University of Aberdeen, Aberdeen

    Google Scholar 

  • Mathur J, Chua NH (2000) Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes. Plant Cell 12:465–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morohashi K, Zhao MZ, Yang ML, Read B, Lloyd A, Lamb R, Grotewold E (2007) Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiol 145:736–746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oppenheimer DG (1998) Genetics of plant cell shape. Curr Opin Plant Biol 1:520–524

    CAS  PubMed  Google Scholar 

  • Payne T, Clement J, Arnold D, Lloyd A (1999) Heterologous myb genes distinct from GL1 enhance trichome production when overexpressed in Nicotiana tabacum. Development 126:671–682

    CAS  PubMed  Google Scholar 

  • Puentes A, Agren J (2013) Trichome production and variation in young plant resistance to the specialist insect herbivore Plutella xylostella among natural populations of Arabidopsis lyrata. Entomol Exp Appl 149:166–176

    Google Scholar 

  • Rerie WG, Feldmann KA, Marks MD (1994) The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes Dev 8:1388–1399

    CAS  PubMed  Google Scholar 

  • Serna L, Martin C (2006) Trichomes: different regulatory networks lead to convergent structures. Trends Plant Sci 11:274–280

    CAS  PubMed  Google Scholar 

  • Shepherd RW, Wagner GJ (2007) Phylloplane proteins: emerging defenses at the aerial frontline? Trends Plant Sci 12:51–56

    CAS  PubMed  Google Scholar 

  • Sletvold N, Huttunen P, Handley R, Karkkainen K, Agren J (2010) Cost of trichome production and resistance to a specialist insect herbivore in Arabidopsis lyrata. Evol Ecol 24:1307–1319

    Google Scholar 

  • Szymanski DB (2005) Breaking the WAVE complex: the point of Arabidopsis trichomes. Curr Opin Plant Biol 8:103–112

    CAS  PubMed  Google Scholar 

  • Szymanski DB, Jilk RA, Pollock SM, Marks MD (1998) Control of GL2 expression in Arabidopsis leaves and trichomes. Development 125:1161–1171

    CAS  PubMed  Google Scholar 

  • Walker JD, Oppenheimer DG, Concienne J, Larkin JC (2000) SIAMESE, a gene controlling the endoreduplication cell cycle in Arabidopsis thaliana trichomes. Development 127:3931–3940

    CAS  PubMed  Google Scholar 

  • Wang Z, Yang ZR, Li FG (2019) Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton. Plant Biotechnol J 17:1706–1722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CX, Li HX, Zhang JH, Luo ZD, Gong PJ, Zhang CJ, Li JH, Wang TT, Zhang YY, Lu YE, Ye ZB (2011) A regulatory gene induces trichome formation and embryo lethality in tomato. P Natl Acad Sci USA 108:11836–11841

    CAS  Google Scholar 

  • Zhang F, Zuo KJ, Zhang JQ, Liu XA, Zhang LD, Sun XF, Tang KX (2010) An L1 box binding protein, GbML1, interacts with GbMYB25 to control cotton fibre development. J Exp Bot 61:3599–3613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang AD, Liu DD, Hua CM, Yan A, Liu BH, Wu MJ, Liu YH, Huang LL, Ali I, Gan YB (2016) The Arabidopsis gene zinc finger protein 3(ZFP3) is involved in salt stress and osmotic stress response. PLoS ONE 11:e0168367

    PubMed  PubMed Central  Google Scholar 

  • Zhao M, Morohashi K, Hatlestad G, Grotewold E, Lloyd A (2008) The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development 135:1991–1999

    CAS  PubMed  Google Scholar 

  • Zhou ZJ, An LJ, Sun LL, Zhu SJ, Xi WY, Broun P, Yu H, Gan YB (2011) Zinc Finger Protein5 is required for the control of trichome initiation by acting upstream of Zinc Finger Protein8 in Arabidopsis. Plant Physiol 157:673–682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou ZJ, Sun LL, Zhao YQ, An LJ, Yan A, Meng XF, Gan YB (2013) Zinc Finger Protein 6 (ZFP6) regulates trichome initiation by integrating gibberellin and cytokinin signaling in Arabidopsis thaliana. New Phytol 198:699–708

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Next-Generation BioGreen 21 Program (Plant Molecular Breeding Center No. PJ013268), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

Won-Ki Hong, Jae-In Chun, Na-Rae Jeong, and Heejin Kim carried out the experiments. Won-Ki Hong and Jae-In Chun analyzed the statistical data and verified the accuracy of the tests. Won-Ki Hong collected available literature and prepared the first draft of the manuscript with support from Jae-In Chun. Jin-Ho Kang designed all the experiments, prepared the draft, and he is also responsible for the correspondence.

Corresponding author

Correspondence to Jin-Ho Kang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest. The authors alone are responsible for the accuracy and integrity of the paper content.

Additional information

Communicated by Sung-Chur Sim.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, WK., Chun, JI., Jeong, NR. et al. Tomato hairless on stems mutant affects trichome development. Hortic. Environ. Biotechnol. 62, 77–85 (2021). https://doi.org/10.1007/s13580-020-00288-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-020-00288-w

Keywords

Navigation