Skip to main content

Key role of boron compartmentalisation-related genes as the initial cell response to low B in citrus genotypes cultured in vitro

Abstract

This work compared the expression of the main B transport-related genes (some members of the aquaporin family -NIP5, TIP5 and PIP1- and some efflux-B transporters -BOR1 and BOR4-), and the response of some physiological parameters in two citrus species [Citrus macrophylla W. (CM) and Citrus aurantium L. (CA)] under moderate and low boron (B) conditions. Seedlings were cultured “in vitro” in media supplemented with 50 or 0 μM H3BO3. NIP5, BOR1 and PIP1 expressions were enhanced by low B levels in both genotypes. TIP5 was down-regulated in the roots and leaves of the CA0 seedlings, and in the roots of CM0. BOR4 also lowered in the roots of both species at 0 μM H3BO3. Consequently, citrus species showed a common tolerance mechanism to low B conditions based on the synergism among transport channel NIP5, non-selective aquaporin PIP1 and transporter BOR1, and the impairment of genes TIP5 and BOR4 related with tolerance responses to B-toxic conditions. However, the CA genotype displayed low B symptoms earlier than CM (reduced plant biomass, length, relative growth rate and chlorophyll content). Proline concentration was higher in CM0 than in CA0 leaves, while the latter also enhanced malonaldehyde content. Although both plants had similar B concentrations, they differed in B content and B partitioning fractions. Whereas the CA genotype was more affected by lack of B treatment as more B was needed inside the cell, the more minimal need of cell B in CM favoured its allocation in the insoluble fraction and allowed growth in this genotype. In conclusion, B compartmentalisation seems critical in tolerance to low B level in citrus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Agüero J, Vives MC, Velázquez K, Pina JA, Navarro L, Moreno P, Guerri J (2014) Effectiveness of gene silencing induced by viral vectors based on Citrus leaf blotch virus is different in Nicotiana benthamiana and citrus plants. Virol J 460:154–164

    Article  CAS  Google Scholar 

  • An J, Liu Y, Yang C, Zhou G, Wei Q, Peng S (2012) Isolation and expression analysis of CiNIP5, a citrus boron transport gene involved in tolerance to boron deficiency. Sci Hortic 142:149–154

    Article  CAS  Google Scholar 

  • Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    Article  CAS  PubMed  Google Scholar 

  • Camacho-Cristobal JJ, Rexach J, Herrera-Rodríguez MA, Navarro-Gochicoa MT, González-Fuentes A (2011) Boron deficiency and transcript level changes. Plant Sci 181:85–89

    Article  CAS  PubMed  Google Scholar 

  • Cañón P, Aquea F, Rodríguez-Hoces de la Guardia A, Arce-Johnson P (2013) Functional characterization of Citrus macrophylla BOR1 as a boron transporter. Physiol Plant 149:329–339

    PubMed  Google Scholar 

  • Chaumont F, Barrieu F, Jung R, Chrispeels MJ (2000) Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol 122:1025–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danielson JA, Johanson U (2008) Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124:1349–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frommer WB, Von Wiren N (2002) Plant biology: ping-pong with boron. Nature 420:282–283

    Article  CAS  PubMed  Google Scholar 

  • Gaspar M, Bousser A, Sissoëff I, Roche O, Hoarau J, Mahë A (2003) Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea. Plant Sci 165:21–31

    Article  CAS  Google Scholar 

  • Gimeno V, Simon I, Nieves M, Martinez V, Camara-Zapata JM, Garcia AL, Garcia-Sanchez F (2012) The physiological and nutritional responses to an excess of boron by Verna lemon trees that were grafted on four contrasting rootstocks. Tress 26:1513–1526

    Article  CAS  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Hajiboland R, Bahrami-Rad S, Bastani S, Tolrà R, Poschenrieder C (2013) Boron re-translocation in tea (Camellia sinensis (L.) O. Kuntze) plants. Acta Physiol Plant 35:2373–2381

    Article  CAS  Google Scholar 

  • Han S, Chen LS, Jiang HX, Smith BT, Yang LT, Xie CY (2008) Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. J Plant Physiol 165:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Hanaoka H, Fujiwara T (2007) Channel-mediated boron transport in rice. Plant Cell Physiol 48:227

    Google Scholar 

  • Herrera-Rodríguez MB, Gonzalez-Fontes A, Rexach J, Camacho-Cristobal JJ, Maldonado JM, Navarro-Gochicoa MT (2010) Role of boron in vascular plants and response mechanisms to boron stresses. Plant Stress 4:115–122

    Google Scholar 

  • Hodges DM, De Long JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:180–198

    Article  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasajima I, Ide Y, Hirai MY, Fujiwara T (2010) WRKY6 is involved in the response to boron deficiency in Arabidopsis thaliana. Physiol Plant 130:80–92

    Article  CAS  Google Scholar 

  • Kato Y, Miwa K, Takano J, Wada M, Fujiwara T (2009) Highly boron deficiency-tolerant plants generated by enhanced expression of NIP5;1, a boric acid channel. Plant Cell Physiol 50:58–66

    Article  CAS  PubMed  Google Scholar 

  • Keles Y, Oncel I, Yenice N (2004) Relationship between boron content and antioxidant compounds in citrus leaves taken from fields with different water source. Plant Soil 265:345–353

    Article  CAS  Google Scholar 

  • Koshiba T, Kobayashi M, Matoh T (2009) Boron deficiency. How does the defect in cell wall damage the cells? Plant Signal Behav 4:557–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu GD, Wang RD, Liu LC, Wu LS, Jiang CC (2013) Cellular boron allocation and pectin composition in two citrus rootstock seedlings differing in boron deficiency response. Plant Soil 370:555–565

    Article  CAS  Google Scholar 

  • Makkee M, Kreboom APG, Van Bekkum H (1985) Studies on borate esters III. Borate esters of d-mannitol, d-glucitol, d-fructose and d-glucose in water. Reel Trav Chim Pays Bas 104:230–235

    Article  CAS  Google Scholar 

  • Martínez-Ballesta MC, Bastías E, Zhu C, Schäffner AR, González-Moro B, González-Murua C, Carvajal M (2008) Boric acid and salinity effects on Maize roots. Response of aquaporins ZmPIP1 and ZmPIP2, a plasma membrane H+-ATPase, in relation to water and nutrient uptake. Physiol Plant 132:479–490

    Article  CAS  Google Scholar 

  • Martinez-Cuenca MR, Martínez-Alcántara B, Quiñones A, Ruiz M, Iglesias DJ, Primo-Millo E, Forner-Giner MA (2015) Physiological and molecular responses to excess boron in Citrus macrophylla W. PLoS ONE. https://doi.org/10.1371/journal.pone.0134372

    Article  PubMed  PubMed Central  Google Scholar 

  • Mei L, Sheng O, Peng S, Zhou G, Wei Q, Li Q (2011) Growth, root morphology and boron uptake by citrus rootstocks seedlings differing in boron-deficiency responses. Sci Hortic 129:426–432

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Miwa K, Fujiwara T (2010) Boron transport in plants: co-ordinated regulation of transporters. Ann Bot 105:1103–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miwa K, Takano J, Fujiwara T (2006) Improvement of seed yields under boron-limiting conditions through Overexpression of BOR1, a boron transporter for xylem loading in Arabidopsis thaliana. Plant J 46:1084–1091

    Article  CAS  PubMed  Google Scholar 

  • Miwa K, Takano J, Omori H, Seki M, Shinozaki K, Fujiwara T (2007) Plants tolerant to high boron levels. Science 318:1417

    Article  CAS  PubMed  Google Scholar 

  • Miwa K, Aibara I, Fujiwara T (2014) Arabidopsis thaliana BOR4 is upregulated under high boron conditions and confers tolerance to high boron. J Soil Sci Plant Nutr 60:349–355

    Article  CAS  Google Scholar 

  • Molassiotis A, Sotiropoulos T, Tanou G, Diamantidis G, Therios I (2006) Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environ Exp Bot 56:54–62

    Article  CAS  Google Scholar 

  • Moran R, Porath D (1980) Chlorophyll determination in intact tissues using N,N-dimethylformamide. Plant Physiol 65:478–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa Y, Hanaoka J, Kobayashi M, Miyoshi K, Miwa K, Fujiwara T (2007) Cell-type specificity of the expression of OsBOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. Plant Cell 19:2624–2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtuska T, Ito H, Tanaka A (1997) Conversion of chlorophyll b to chlorophyll a and the assembly of chlorophyll with apoprotein by isolated chloroplast. Plant Physiol 113:137–147

    Article  Google Scholar 

  • O’Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan II structure and function of a borate cross-linked cell wall peptic polysaccharide. Ann Rev Plant Biol 55:109–139

    Article  CAS  Google Scholar 

  • Pan Y, Wang ZH, Yang L, Wang ZF, Shi L, Naran R, Azadi P, Xu FS (2012) Differences in cell wall components and allocation of boron to cell walls confer variations in sensitivities of Brassica napus cultivars to boron deficiency. Plant Soil 354:383–394

    Article  CAS  Google Scholar 

  • Pandey N, Archana (2013) Antioxidant responses and water status in Brassica seedlings subjected to boron stress. Acta Physiol Plant 35:697–706

    Article  CAS  Google Scholar 

  • Pang Y, Li L, Ren F, Lu PWP, Cai J, Xin L, Zhang J, Chen J, Wang X (2010) Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis. J Genet Genom 37:389–397

    Article  CAS  Google Scholar 

  • Pérez-Castro R, Kasai K, Gainza-Cortes F, Ruiz-Lara S, Casaretto JA, Pena-Cortes H, Tapia J, Fujiwara T, González E (2012) VvBOR1, the grapevine orthologue of AtBOR1, encodes an efflux boron transporter that is differentially expressed throughout reproductive development of Vitis vinifera L. Plant Cell Physiol 53:485–494

    Article  CAS  PubMed  Google Scholar 

  • Reid R (2007) Identification of boron transporter genes likely to be responsible for tolerance to boron toxicity in wheat and barley. Plant Cell Physiol 48:1673–1678

    Article  CAS  PubMed  Google Scholar 

  • Rerkasem B, Jamjod S (1997) Genotypic variation in plant response to low boron and implications for plant breeding. Plant Soil 193:169–180

    Article  CAS  Google Scholar 

  • Rodríguez-Gamir J, Ancillo G, González-Mas MC, Primo-Millo E, Iglesias DJ, Forner-Giner MA (2011) Root signalling and modulation of stomatal closure in flooded citrus seedlings. Plant Physiol Biochem 49:636–645

    Article  CAS  PubMed  Google Scholar 

  • Sheng O, Song S, Peng S, Deng X (2009) The effects of low boron on growth, gas exchange, boron concentration and distribution of ‘Newhall’ navel orange (Citrus sinensis Osb.) plants grafted on two rootstocks. Sci Hortic 121:278–283

    Article  CAS  Google Scholar 

  • Shorrocks VM (1997) The occurrence and correction of boron deficiency. Plant Soil 193:121–148

    Article  CAS  Google Scholar 

  • Sun JH, Shi L, Zhang CY, Xu FS (2012) Cloning and characterization of boron transporters in Brassica napus. Mol Biol Rep 39:1963–1973

    Article  CAS  PubMed  Google Scholar 

  • Sutton T, Baumann U, Hayes J, Collins NC, Shi BJ, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M, Langridge P (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318:1446–1449

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fjiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–340

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, Von Wiren N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  PubMed Central  Google Scholar 

  • Takano J, Tanaka M, Toyoda A, Miwa K, Kasai K, Fuji K, Onouchi H, Naito S, Fujiwara T (2010) Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. Proc Natl Acad Sci USA 107:5220–5225

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Takano J, Chiba Y, Lombardo F, Ogasawara Y, Onouchi H, Naito S, Fujiwara T (2011) Boron-dependent degradation of NIP5;1 mRNA for acclimation to excess boron conditions in Arabidopsis. Plant Cell 23:3547–3559. https://doi.org/10.1105/tpc.111.088351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao JX, Yang X, Peng SA, Fang YW (2007) Seasonal changes of mineral nutrients in fruit and leaves of ‘Newhall’ and ‘Skagg’s Bonanza’ navel oranges. J Plant Nutr 30:671–690

    Article  CAS  Google Scholar 

  • Yang L, Zhang Q, Dou J, Li L, Guo L, Shi L, Xu F (2013a) Characteristics of root boron nutrition confer high boron efficiency in Brassica napus cultivars. Plant Soil 371:95–104

    Article  CAS  Google Scholar 

  • Yang LT, Qi YP, Lu YB, Guo P, Sang W, Feng H, Zhang HX, Chen LS (2013b) iTRAQ protein profile analysis of Citrus sinensis roots in response to long-term boron deficiency. J Proteomics 93:179–206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (RTA2014-00059) and the Generalitat Valenciana. Amparo Primo has a Grant from European Social Found.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Angeles Forner-Giner.

Additional information

Communicated by Kwan Jeong Song, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martínez-Cuenca, MR., Primo-Capella, A. & Forner-Giner, M.A. Key role of boron compartmentalisation-related genes as the initial cell response to low B in citrus genotypes cultured in vitro. Hortic. Environ. Biotechnol. 60, 519–530 (2019). https://doi.org/10.1007/s13580-018-0054-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-018-0054-7

Keywords

  • BOR transporters
  • Citrus rootstocks
  • NIP5 transport channel
  • PIP1 aquaporin