Horticulture, Environment, and Biotechnology

, Volume 59, Issue 2, pp 225–230 | Cite as

Effects of backcrossing on quality of strawberry fruit

  • Sun Yi Lee
  • Seung Yu Kim
  • Dae Young Kim
  • Ho Jeong Jeong
  • In Seok Um
  • Il Rae Rho
Research Report Genetics and Breeding
  • 67 Downloads

Abstract

American/European strawberry cultivars are morphologically different from Asian cultivars with American cultivars generally having higher yields, fruit weight, and fruit hardness and Asian cultivars tending to have higher sugar content. In this study, we performed backcrossing to improve the fruit qualities of Asian varieties of strawberries using American cultivars as the donor parent. The F1 progeny derived from crosses between Asian and American cultivars tended to have lower sugar content and higher fruit weight and yield than Asian cultivars, but fruit hardness did not differ between the Asian cultivars and the progenies. The percent germination and survival ratio were not significantly different between the BC1F1 and BC2F1 generations, whereas the percent germination decreased rapidly with advancing backcross generations. The BC1F1 generation had slightly higher sugar content and the sugar content of the BC2F1 generation increased significantly over the BC1F1 generation, but fruit weight and yield decreased. However, there was variability among individual progeny from the same cross. With advancing generations of backcrossing (BC3F1, BC4F1, BC5F1), sugar content tended to improve while fruit weight and yield tended to decrease, and hardness tended not to change. Therefore, to develop new cultivars with the combined qualities of Asian and American cultivars, we concluded that generations beyond the BC2F1 are not necessary, and that the selection efficiency of superior individual plants can be improved if the number of seedlings is increased in generations before the BC1F1 or BC2F1.

Keywords

Backcross generations Day-neutral Ever-bearing June bearing Variation 

Notes

Acknowledgement

This work was supported by grant No. PJ010911 from the Agricultural R&D, Rural Development Administration, Republic of Korea.

References

  1. Castro P, Bushakra JM, Stewart P, Weebadde CK, Wang D, Hancock JF, Finn CE, Luby JJ, Lewers KS (2015) Genetic mapping of day-neutrality in cultivated strawberry. Mol Breed.  https://doi.org/10.1007/s11032-015-0250-4 Google Scholar
  2. Darrow GM (1966) The strawberry: history, breeding and physiology. Holt, Rinehart, and Winston, New York, pp 50–57Google Scholar
  3. Diamanti J, Mazzoni L, Balducci F, Cappelletti R, Capocasa F, Battino M, Dobson G, Stewart D, Mezzetti B (2014) Use of wild genotypes in breeding program increases strawberry fruit sensorial and nutritional quality. J Agric Food Chem 62:3944–3953CrossRefPubMedGoogle Scholar
  4. Evans WD (1977) The use of synthetic octoploids in strawberry breeding. Euphytica 26:497–503CrossRefGoogle Scholar
  5. Finn CE, Retamales JB, Lobos GA, Hancock JF (2013) The chilean strawberry (Fragaria chiloensis): over 1000 years of domestication. HortSci 48:418–421Google Scholar
  6. Food and Agriculture Organization of the United Nations (2016) FAOSTAT database. Rome, Italy. http://www.fao.org/faostat/en/#data/QC
  7. Giménez G, Ballington JR (2002) Inheritance of resistance to Colletotrichum acutatum simmonds on runners of garden strawberry and its backcrosses. HortSci 37:686–690Google Scholar
  8. Hirvi T, Honkanen E (1982) The volatiles of two new strawberry cultivars, “Annelie” and “Alaska Pioneer”, obtained by backcrossing of cultivated strawberries with wild strawberries, Fragaria vesca, Rugen and Fragaria virginiana. Z Lebensm Unters Forsch 175:113–116CrossRefGoogle Scholar
  9. Jeong HJ, Choi HG, Moon BY, Cheong JW, Kang NJ (2016) Comparative analysis of the fruit characteristics of four strawberry cultivars commonly grown in South Korea. Kor J Hort Sci Technol 34:396–404Google Scholar
  10. Kim SH, Kim DG, Choi SG, Yoon JT, Lee JT (2002) Primary inoculum of strawberry anthrancnose in nursing field. Res Plant Dis 8:228–233CrossRefGoogle Scholar
  11. Lee JN, Kim HJ, Kim KD, Kwen KB, Suh JT (2017) Characteristics of new ever-bearing strawberry ‘Jangha’ bred for high soluble solids contents. Hortic Sci Technol 35:381–386Google Scholar
  12. Lei JJ, Tan CH, Dai HP, Pang L (2010) Study on obtaining pentaploid interspecific hybrids and its backcross in strawberry. Jilin Nong Ye Da Xue Xue Bao. J Jilin Agri Univ 32:284–288Google Scholar
  13. Lewers KS, Enns JM, Wang SY, Maas JL, Galletta GJ, Hokanson SC (2004) ‘Ovation’ strawberry. HortSci 39:1785–1788Google Scholar
  14. Lopez AJM, Soria C, Sevilla JFS, Galvez J, Medina JJ, Arjona A, Marsal JI, Bartuel R (2004) ‘Marina’ strawberry. HortSci 39:1776–1777Google Scholar
  15. Nam MH, Jung SK, Kim NG, Yoo SJ, Kim HG (2005) Resistance analysis of cultivars and occurrence survey of fusarium wilt on strawberry. Res Plant Dis 111:35–38CrossRefGoogle Scholar
  16. Oda Y, Inoue R, Saito A, Sakurai F, Kawasaki S (2014) Protected overwinter strawberry cultural system in Japan: origin, renovation, and consecutive improvements. Acta Hort 1049:167–171CrossRefGoogle Scholar
  17. Rho IR, Cho YS, Cheong JW, Jeong HJ (2010a) Effect of seed parents on varietal performance in strawberry. Korean. J Breed Sci 42:374–380Google Scholar
  18. Rho IR, Woo JG, Jeong HJ, Cho YS, Cheong JW, Kim JO, Kim DS, Choi HG, Ryu et al. (2010b) Major cultivar and origin of strawberry. RDA Suwon pp 1–9Google Scholar
  19. Simpson DW (2014) Strawberry breeding and genetics research in northwest Europe. Acta Hort 1049:107–111CrossRefGoogle Scholar
  20. Taylor DR, Blake PS, Crisp CM (2000) Identification of gibberellins in leaf tissues of day-neutral strawberry (Fragaria x ananassa Duch.) cultivars. Plant Growth Regul 30:5–7CrossRefGoogle Scholar
  21. Zhang Y, Wang G, Chang L, Dong J, Zhong C, Wang L (2012) Current status of strawberry production and research in china. Acta Hort 1049:67Google Scholar

Copyright information

© Korean Society for Horticultural Science and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sun Yi Lee
    • 1
  • Seung Yu Kim
    • 1
  • Dae Young Kim
    • 1
  • Ho Jeong Jeong
    • 2
  • In Seok Um
    • 3
  • Il Rae Rho
    • 3
    • 4
  1. 1.Vegetable Research DivisionNational Institute of Horticultural & Herbal ScienceWanjuSouth Korea
  2. 2.Planning and Coordination DivisionNational Institute of Horticultural & Herbal ScienceWanjuSouth Korea
  3. 3.Department of AgronomyGyeongsang National UniversityJinjuSouth Korea
  4. 4.Institute of Agriculture & Life Science, Gyeongsang National UniversityJinjuSouth Korea

Personalised recommendations