Horticulture, Environment, and Biotechnology

, Volume 59, Issue 2, pp 263–274 | Cite as

Construction of genetic linkage maps of ‘Fina Sodea’ clementine (Citrus clementina) and Byungkyul (C. platymamma), a Korean landrace, based on RAPD and SSR markers

  • Yali Chang
  • Ho Bang Kim
  • Eun-Ui Oh
  • Kyunguk Yi
  • Kwan Jeong Song
Research Report Genetics and Breeding


In this study, genetic linkage maps were constructed for ‘Fina Sodea’ clementine (Citrus clementina) and Byungkyul (C. platymamma) using 152 F1 clones as a mapping population. Reference-guided whole-genome sequencing, using next-generation sequencing technology, along with 82 randomly amplified polymorphic DNA markers and seven genomic simple-sequence repeat (gSSR) loci, mined 41 polymorphic gSSR loci from the direct comparative analysis. The generated linkage map for ‘Fina Sodea’ clementine contained 22 markers distributed into 10 linkage groups, with a total length of 417.7 cM and an average interval of 19.0 cM. The map for Byungkyul contained 57 markers distributed into 10 linkage groups, with a total length of 684.9 cM and a smaller average interval of 12.0 cM. Comparison of shared gSSR markers between the two maps identified collinearities, such as linkage groups B3 and C7 and groups B9 and C7. The newly developed gSSR markers greatly enrich the limited amount of gSSR markers in Citrus, providing markers that can be useful for comparative mapping and other genetic studies.


Citrus Genome mapping Genome sequence comparison Molecular markers 



This study was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Golden Seed Project (No. 213007-05-1-SBQ10), funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA).


  1. Cai Q, Guy CL, Moore GA (1994) Extension of the genetic linkage map in Citrus using random amplified polymorphic DNA (RAPD) markers and RFLP mapping of cold-acclimation responsive loci. Theor Appl Genet 89:606–614CrossRefPubMedGoogle Scholar
  2. Chen C, Zhou P, Choi YA, Huang S, Gmitter GF (2006) Mining and characterizing microsatellites from citrus ESTs. Theor Appl Genet 112:1248–1257CrossRefPubMedGoogle Scholar
  3. Chen CX, Bowman KD, Choi YA, Dang PM, Rao MN, Huang S, Soneji JR, Mccollum TG et al (2008) EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliata. Tree Genet Genomes 4:1–10CrossRefGoogle Scholar
  4. Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform 11:485CrossRefGoogle Scholar
  5. Fang DQ, Federici CT, Roose ML (1998) A high-resolution linkage map of the citrus tristeza virus resistance gene region in Poncirus trifoliata (L.) Raf. Genetics 150:883–890PubMedPubMedCentralGoogle Scholar
  6. Gan LS (1992) Cultivation techniques of China famous pumelo. Golden Shield Press, BeijingGoogle Scholar
  7. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and E. urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedPubMedCentralGoogle Scholar
  8. Gulsen O, Uzun A, Canan I, Seday U, Canihos E (2010) A new citrus linkage map based on SRAP, SSR, ISSR, POGP, RGA and RAPD markers. Euphytica 173:265–277CrossRefGoogle Scholar
  9. Guo F, Yu HW, Zheng Tang, Jiang XL, Wang L, Wang X, Xu Q, Deng XX (2015) Construction of a SNP-based high-density genetic map for pumelo using RAD sequencing. Tree Genet Genomes 11:2CrossRefGoogle Scholar
  10. Han GH (2012) Construction of molecular linkage map and genetic analysis of hybrids and polyploidy of citrus based on EST-SSR, genomic-SSR and SCoT markers. Dissertation, Southwest UniversityGoogle Scholar
  11. Hackett CA, Wachira FN, Paul S (2000) Construction of a genetic linkage map for Camellia sinensis (tea). Heredity 85:346–355CrossRefPubMedGoogle Scholar
  12. Hu CG, Zhang JZ, Yao JL (2013) Genomic comparative analysis combined with linkage map to illustrate the molecular mechanism of precocious flowering in citrus plan. Plant Anim Genome XXI P1026:14Google Scholar
  13. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760CrossRefPubMedPubMedCentralGoogle Scholar
  14. Li XH, Wang XJ, Wei YL, Brummer EC (2011) Prevalence of segregation distortion in diploid alfalfa and its implications for genetics and breeding applications. Theor Appl Genet 123:667–679CrossRefPubMedGoogle Scholar
  15. Luro FL, Costantino G, Terol J, Argout X, Allario T, Wincker P, Talon M, Ollitrault P, Morillon R (2008) Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping. BMC Genom 9:287CrossRefGoogle Scholar
  16. Ma JQ, Yao MZ, Ma CL, Wang XC, Jin JQ, Wang XM, Chen L (2014) Construction of a SSR-based genetic map and identification of QTLs for catechins content in tea plant (Camellia sinensis). PLoS ONE 9(3):e93131CrossRefPubMedPubMedCentralGoogle Scholar
  17. Mestre PF, Asins MJ, Carbonell EA, Navarro L (1997) New gene(s) involved in the resistance of Poncirus trifoliata (L.) Raf. to citrus tristeza virus. Theor Appl Genet 95:691–695CrossRefGoogle Scholar
  18. Mitsuo O, Takehiko S (2016) Citrus breeding, genetics and genomics in Japan. Breed Sci 66:3–17CrossRefGoogle Scholar
  19. Ohta S, Endo T, Shimada T, Fujii H, Shimizu T, Kita M, Kuniga T, Yoshioka T, Nesumi H et al (2015) Construction of genetic linkage map and graphical genotyping of pseudo-backcrossed F2(BC’2) progeny to introduce a CTV resistance from Poncirus trifoliata (L.) Raf. into Citrus by introgression breeding. Tree Genet Genom 11:797CrossRefGoogle Scholar
  20. Ollitrault F, Terol J, Pina JA, Navarro L, Talon M, Ollitrault P (2010) Development of SSR markers from Citrus clementina (Rutaceae) BAC end sequences and interspecific transferability in Citrus. Am J Bot 97:e124–e129CrossRefPubMedGoogle Scholar
  21. Ollitrault P, Terol J, Chen CX, Federici CT, Lotfy S, Hippolyte I, Ollitrault F, Berard A et al (2012) A reference genetic map of Citrus clementina Hort. ex Tan.; citrus evolution inferences from comparative mapping. BMC Genet 13:593CrossRefGoogle Scholar
  22. Sankar AA, Moore GA (2001) Evaluation of inter-simple sequence repeat analysis for mapping in Citrus and extension of the genetic linkage map. Theor Appl Genet 102:206–214CrossRefGoogle Scholar
  23. Untergrasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115CrossRefGoogle Scholar
  24. Van Ooijen JW (2006) JoinMap®4, software for the calculation of genetic linkage maps in experimental population. Kyazma BV, WageningenGoogle Scholar
  25. Weeden NF, Timmerman GM, Hemmat M et al (1992) Inheritance and reliability of RAPD markers. In: Application of RAPD technology to plant breeding: joint plant breeding symposia series Minneapolis, MinnesotaGoogle Scholar
  26. Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F, Perrier X, Ruiz M et al (2013) Sequencing of diverse mandarin, pumelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol 32:656–662CrossRefGoogle Scholar

Copyright information

© Korean Society for Horticultural Science and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yali Chang
    • 1
  • Ho Bang Kim
    • 2
  • Eun-Ui Oh
    • 1
  • Kyunguk Yi
    • 1
  • Kwan Jeong Song
    • 1
    • 3
  1. 1.Faculty of Bioscience and Industry, SARIJeju National UniversityJejuKorea
  2. 2.Life Science Research Institute, Biomedic Co., LtdBucheonRepublic of Korea
  3. 3.Research Institute for Subtropical Agriculture and BiotechnologyJeju National UniversityJejuRepublic of Korea

Personalised recommendations