Abstract
Platycodon grandiflorum A. DC. contains a variety of triterpene saponins induced from the base structure of oleanane-type in roots. The β-amyrin synthase (bAS) plays an important role in controlling the biosynthesis of triterpene saponins and we obtained the full-length cDNA of the gene, which is named PlgOSC1 in P. grandiflorum. To identify the PlgOSC1 products, we expressed it in heterologous yeast cells. Results of GC-MS analysis showed a unique peak that was consistent with that of the authentic β-amyrin standard with exactly the same retention time. Furthermore, the pattern of MS fragments of the peak was also exactly the same as that of the β-amyrin. In qRT-PCR analysis of four organs of P. grandiflorum, no difference in PlgOSC1 expression level was observed; therefore, platycosides derived from β-amyrin might be present in all P. grandiflorum tissues. In conclusion, PlgOSC1 encodes a bAS enzyme that catalyzes the first committed step of platycosides biosynthesis in P. grandiflorum.
This is a preview of subscription content, access via your institution.
References
Abe I, Prestwich GD (1995) Identification of the active site of vertebrate oxidosqualene cyclase. Lipids 30:231–234
Andre CM, Legay S, Deleruelle A, Nieuwenhuizen N, Punter M, Brendolise C, Cooney JM, Lateur M, Hausman JF, et al (2016) Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids. New Phytol 211:1279–1294
Dhar N, Rana S, Razdan S, Bhat WW, Hussain A, Dhar RS, Vaishnavi S, Hamid A, Vishwakarma R, et al (2014) Cloning and functional characterization of three branch point oxidosqualene cyclases from Withania somnifera (L.) dunal. J Biol Chem 289:17249–17267
Ito R, Masukawa Y, Hoshino T (2013a) Purification, kinetics, inhibitors and CD for recombinant β-amyrin synthase from Euphorbia tirucalli L and functional analysis of the DCTA motif, which is highly conserved among oxidosqualene cyclases. FEBS J 280:1267–1280
Ito R, Hashimoto I, Masukawa Y, Hoshino T (2013b) Effect of cation-p interactions and steric bulk on the catalytic action of oxidosqualene cyclase: a case study of Phe728 of β-amyrin synthase from Euphorbia tirucalli L. Chemistry 19:17150–17158
Ito R, Masukawa Y, Nakada C, Amari K, Nakano C, Hoshino T (2014) β-Amyrin synthase from Euphorbia tirucalli. Steric bulk, not the p-electrons of Phe, at position 474 has a key role in affording the correct folding of the substrate to complete the normal polycyclization cascade. Org Biomol Chem 12:3836–3846
Jin ML, Lee DY, Um Y, Lee JH, Park CG, Jetter R, Kim OT (2014) Isolation and characterization of an oxidosqualene cyclase gene encoding a β-amyrin synthase involved in Polygala tenuifolia Willd. saponin biosynthesis. Plant Cell Rep 33:511–519
Khan M, Maryam A, Zhang H, Mehmood T, Ma T (2016) Killing cancer with platycodin D through multiple mechanisms. J Cell Mol Med 20:389–402
Kushiro T, Shibuya M, Ebizuka Y (1998) β-amyrin synthase-Cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur J Biochem 256:238–244
Lee JW, Ji SH, Kim GS, Song KS, Um Y, Kim OT, Lee Y, Hong CP, Shin DH, et al (2015) Global profiling of various metabolites in Platycodon grandiflorum by UPLC-QTOF/MS. Int J Mol Sci 16:26786–26796
Liu Y, Zhao Z, Xue Z, Wang L, Cai Y, Wang P, Wei T, Gong J, Liu Z, et al (2016) An intronless β-amyrin synthase gene is more efficient in oleanolic acid accumulation than its paralog in Gentiana straminea. Sci Rep 6:33364
Ma CH, Gao ZJ, Zhang JJ, Zhang W, Shao JH, Hai MR, Chen JW, Yang SC, Zhang GH (2016) Candidate genes involved in the biosynthesis of triterpenoid saponins in Platycodon grandiflorum identified by transcriptome analysis. Front Plant Sci 7:673
Misra RC, Maiti P, Chanotiya CS, Shanker K, Ghosh S (2014) Methyl jasmonate-elicited transcriptional responses and pentacyclic triterpene biosynthesis in sweet basil. Plant Physiol 164:1028–1044
Nyakudya E, Jeong JH, Lee NK, Jeong YS (2014) Platycosides from the roots of Platycodon grandiflorum and their health benefits. Prev Nutr Food Sci 19:59–68
Phillips DR, Rasbery JM, Bartel B, Matsuda SP (2006) Biosynthetic diversity in plant triterpene cyclization. Curr Opin Plant Biol 9:305–314
Poralla K, Hewelt A, Prestwich GD, Abe I, Reipen I, Sprenger G (1994) A specific amino acid repeat in squalene and oxidosqualene cyclases. Trends Biochem Sci 19:157–158
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739
Thimmappa R, Geisler K, Louveau T, O'Maille P, Osbourn A (2014) Triterpene biosynthesis in plants. Annu Rev Plant Biol 65:225–257
Wang Z, Yeats T, Han H, Jetter R (2010) Cloning and characterization of oxidosqualene cyclases from Kalanchoe daigremontiana: enzymes catalyzing up to 10 rearrangement steps yielding friedelin and other triterpenoids. J Biol Chem 285:29703–29712
Wu Y, Zou HD, Cheng H, Zhao CY, Sun LF, Su SZ, Li SP, Yuan YP (2012) Cloning and characterization of a β-amyrin synthase gene from the medicinal tree Aralia elata (Araliaceae). Genet Mol Res 11:2301–2314
Zhang L, Wang Y, Yang D, Zhang C, Zhang N, Li M, Liu Y (2015) Platycodon grandiflorus - an ethnopharmacological, phytochemical and pharmacological review. J Ethnopharmacol 164:147–161
Zheng X, Luo X, Ye G, Chen Y, Ji X, Wen L, Xu Y, Xu H, Zhan R, et al (2015) Characterisation of two oxidosqualene cyclases responsible for triterpenoid biosynthesis in Ilex asprella. Int J Mol Sci 16:3564–3578
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Supplementary Table 1.
Accession data for the OSCs used in the phylogenetic analyses.
Rights and permissions
About this article
Cite this article
Um, Y., Jin, M.L., Lee, D.Y. et al. Functional characterization of the β-amyrin synthase gene involved in platycoside biosynthesis in Platycodon grandiflorum. Hortic. Environ. Biotechnol. 58, 613–619 (2017). https://doi.org/10.1007/s13580-017-0054-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13580-017-0054-z
Additional key words
- beta-amyrin synthase
- oxidosqualene cyclase
- platycosides
- triterpenoids