Skip to main content
Log in

Effect of rootstock on growth, fruit production and quality of tomato plants grown under low temperature and light conditions

  • Research Report
  • Protected Horticulture
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

We compared the growth of tomato plants ‘Jack’ grafted onto nine rootstocks with that of self-grafted and non-grafted plants, all grown in soilless culture in a heated greenhouse, to assess the capacity of commercial tomato rootstocks to improve fruit production and quality during the winter period under conditions of low temperature and light intensity. Neither vegetative development, estimated by the plastochron index, nor the thermal time required for a plastochron variation of one unit was significantly affected by the rootstock genotypes. Furthermore, the rootstock genotype did not mitigate the negative effects of low temperature and light conditions on fruit production. By contrast, the effect of the rootstock on the chemical composition of fruits and leaves was reflected by different allocation of N and C. Thus, the rootstocks affected the N contents of fruits and leaves and the C contents of fruits, but did not generally affect leaf C contents. The C/N ratios and mineral contents of fruits and leaves of grafted plants tended to decrease, leading to lower construction costs than in non-grafted or self-grafted plants. Thus, the use of rootstock reduced the energy needed to construct one unit of dry mass. Although the rootstock genotype did not affect fruit juiciness, titratable acidity (TA) or juice pH, it greatly influenced fruit quality parameters such as soluble solid content (SSC), SSC/TA ratio, juice electrical conductivity, ash contents, dry weight, firmness and puree consistency. Under the experimental conditions and in comparison with non-grafted and self-grafted plants, almost all rootstocks tended to be detrimental to the quality parameters considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AOAC 1999. Titratable acidity of fruit products, p. 10–11. In: P. Cunniff (ed.). Official Methods of Analysis of AOAC International. 16th ed Gaithersburg, Maryland, USA.

    Google Scholar 

  • Baldwin, E.A., J.W. Scott, M.A. Einstein, T.M.M. Malundo, B.T. Carr, R.L. Shewfelt, and K.S. Tandon. 1998. Relationship between sensory and instrumental analysis for tomato flavor. J. Am. Soc. Hortic. Sci. 123:906–915.

    CAS  Google Scholar 

  • Barrett, C.E., X. Zhao, C.A. Sims, J.K. Brecht, E.Q. Dreyer, and Z. Gao. 2012. Fruit composition and sensory attributes of organic heirloom tomatoes as affected by grafting. HortTechnology 22: 804–809.

    Google Scholar 

  • Baruch, Z., R. Pattison, and G. Goldstein. 2000. Responses to light and water availability of four invasive Melastomataceae in the Hawaiian islands. Int. J. Plant Sci. 161:107–118.

    Article  PubMed  Google Scholar 

  • Bulder, H.A.M., P. Van Hasselt, and P.J.C. Kuiper. 1987. The effect of temperature on early growth of cucumber genotypes differing in genetic adaptation to low-energy conditions. Sci. Hortic. 31: 53–60.

    Article  Google Scholar 

  • Criddle, R., B. Smith, and L. Hansen. 1997. A respiration based description of plant growth rate responses to temperature. Planta 201:441–445.

    Article  CAS  Google Scholar 

  • Davis, A.R., P. Perkins-Veazie, R. Hassell, A. Levi, S.R. King, and X. Zhang. 2008. Grafting effects on vegetable quality. HortScience 43:1670–1672.

    Google Scholar 

  • Di Gioia, B.F., F. Serio, D. Buttaro, O. Ayala, and P. Santamaria. 2010. Influence of rootstock on vegetative growth, fruit yield and quality in Cuore di Bue an heirlom tomato. J. Hortic. Sci. Biotechnol. 85:477–482.

    Google Scholar 

  • Erickson, R. and F. Michelini. 1957. The plastochron index. Am. J. Bot. 44:297–305.

    Article  Google Scholar 

  • Fernández-García, N., V. Martínez, A. Cerdá, and M. Carvajal. 2004. Fruit quality of grafted tomato plants grown under saline conditions. J. Hortic. Sci. Biotechnol. 79:995–1001.

    Google Scholar 

  • Flores, F.B., P. Sanchez-Bel, M.T. Estañ, M.M. Martinez-Rodriguez, E. Moyano, B. Morales, J.F. Campos, J.O. Garcia-Abellán, M.I. Egea, N. Fernández-Garcia, F. Romojaro, and M.C. Bolarín. 2010. The effectiveness of grafting to improve tomato fruit quality. Sci. Hortic. 125:211–217.

    Article  Google Scholar 

  • Gary, C., N. Bertin, J.S. Frossard, and J. Le Bot. 1998a. High mineral contents explain the low construction cost of leaves, stems and fruits of tomato plants. J. Exp. Bot. 49:49–57.

    Article  CAS  Google Scholar 

  • Gary, C., J. Le Bot, J.S. Frossard, and J.L. Andriolo. 1998b. Ontogenic changes in the construction cost of leaves, stems, fruits, and roots of tomato plants. J. Exp. Bot. 49:59–68.

    CAS  Google Scholar 

  • Gebologlu, N., E. Yilmaz, P. Cakmak, M. Aydin, and Y. Kasap. 2011. Determining of the yield, quality and nutrient content of tomatoes grafted on different rootstocks in soilless culture. Sci. Res. Essays 6:2147–2153.

    CAS  Google Scholar 

  • Ingestad, T. and G.I. Agren. 1992. Theories and methods on plant nutrition and growth. Physiol. Plant. 84:177–184.

    Article  CAS  Google Scholar 

  • Khah, E.M., E. Kakava, A. Mavromatis, D. Chachalis, and C. Goulas. 2006. Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. J. Appl. Hortic. 8:3–7.

    Google Scholar 

  • Lee, J.M., C. Kubota, S.J. Tsao, Z. Bie, P.H. Echevarria, L. Morra, and M. Oda. 2010. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hortic. 127:93–105.

    Article  Google Scholar 

  • Masle, J., G. Farquhar, and S. Wong. 1992. Transpiration ratio and plant mineral content are related among genotypes of a range of species. Aust. J. Plant Physiol. 19:709–721.

    Article  CAS  Google Scholar 

  • McDonald, A.J.S., T. Ericsson, and C.-M. Larsson. 1996. Plant nutrition, dry matter gain and partitioning at the whole-plante level. J. Exp. Bot. 47:1245–1253.

    Article  CAS  PubMed  Google Scholar 

  • Nicoletto, C., F. Tosini, and P. Sambo. 2012. Effect of grafting on biochemical and nutritional traits of 'Cuore di Bue' tomatoes harvested at different ripening stages. Acta Agric. Scand., Sect. B 63:114–122.

    Google Scholar 

  • Nicoletto, C., F. Tosini, and P. Sambo. 2013. Effect of grafting and ripening conditions on some qualitative traits of ‘Cuore di Bue’ tomato fruits. J. Sci. Food Agric. 93:1397–1403.

    Article  CAS  PubMed  Google Scholar 

  • Ntatsi, G., D. Savvas, U. Druege, and D. Schwarz. 2013. Contribution of phytohormones in alleviating the impact of sub-optimal temperature stress on grafted tomato. Sci. Hortic. 149:28–38.

    Article  CAS  Google Scholar 

  • Ntatsi, G., D. Savvas, K. Huntenburg, U. Druege, D.K. Hincha, E. Zuther, and D. Schwarz. 2014a. A study on ABA involvement in the response of tomato to suboptimal root temperature using reciprocal grafts with notabilis, a null mutant in the ABA-biosynthesis gene LeNCED1. Environ. Exp. Bot. 97:11–21.

    Article  CAS  Google Scholar 

  • Ntatsi, G., D. Savvas, H.P. Kläring, and D. Schwarz. 2014b. Growth, yield, and metabolic responses of temperature-stressed tomato to grafting onto rootstocks differing in cold tolerance. J. Am. Soc. Hortic. Sci. 139:230–243.

    CAS  Google Scholar 

  • Okimura, M., S. Matso, K. Arai, and S. Okitsu. 1986. Influence of soil temperature on the growth of fruit vegetable grafted on different stocks. Bull. Veg. Ornam. Crops Res. Stn. Jpn. C9:43–58.

    Google Scholar 

  • Öztekin, G.B., F. Giuffrida, Y. Tuzel, and C. Leonardi. 2009. Is the vigour of grafted tomato plants related to root characteristics? J. Food Agric. Environ. 7:364–368.

    Google Scholar 

  • Peng, S., D.M. Eissenstat, J.H. Graham, K. Williams, and N.C. Hodge. 1993. Growth depression in mycorrhizal citrus at high-phosphorus supply (analysis of carbon costs). Plant Physiol. 101:1063–1071.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perry, K.B., Y. Wu, D.C. Sanders, J. Thomas Garrett, D.R. Decoteau, R.T. Nagata, R.J. Dufault, K. Dean Batal, D.M. Granberry, and W.J. Mclaurin. 1997. Heat units to predict tomato harvest in the southeast USA. Agric. Forest Meteo. 84:249–254.

    Article  Google Scholar 

  • Pogonyi, Á., Z. Pék, L. Helyes, and A. Lugasi. 2005. Effect of grafting on the tomato's yield, quality and main fruit components in spring forcing. Acta Alim. 34:453–462.

    Article  Google Scholar 

  • Poorter, H. 1994. Construction costs and payback time of biomass: a whole plant perspective, p. 111–127. In: J. Roy and E. Garnier (eds.). A Whole Plant Perspective on Carbon-Nitrogen Interactions SPB Academic Publishing.

    Google Scholar 

  • Poorter, H., Y. Van Berkel, R. Baxter, J. Den Hertog, P. Dijkstra, R.M. Gifford, K.L. Griffin, C. Roumet, J. Roy, and S.C. Wong. 1997. The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant Cell Env. 20:472–482.

    Article  CAS  Google Scholar 

  • Quinby, J.R., J.D. Hesketh, and R.L. Voigt. 1973. Influence of temperature and photoperiod on floral initiation and leaf number in sorghum. Crop Sci. 13:243–246.

    Article  Google Scholar 

  • Rahmatian, A., M. Delshad, and R. Salehi. 2014. Effect of grafting on growth, yield and fruit quality of single and double stemmed tomato plants grown hydroponically. Hortic. Environ. Biotechnol. 55:115–119.

    Article  Google Scholar 

  • Raper, C.D., J.F. Thomas, M. Wann, and E.K. York. 1975. Temperatures in early post-transplant growth: influence on leaf and floral initiation in tobacco. Crop Sci. 15:732–733.

    Article  Google Scholar 

  • Rouphael, Y., D. Schwarz, A. Krumbein, and G. Colla. 2010. Impact of grafting on product quality of fruit vegetables. Sci. Hortic. 127: 172–179.

    Article  Google Scholar 

  • Sánchez-Rodríguez, E., R. Leyva, C. Constán-Aguilar, L. Romero, and J.M. Ruiz. 2014. How does grafting affect the ionome of cherry tomato plants under water stress? Soil Sci. Plant Nutr. 60:145–155.

    Article  Google Scholar 

  • Savvas, D., A. Savva, G. Ntatsi, A. Ropokis, I. Karapanos, A. Krumbein, and C. Olympios. 2011. Effects of three commercial rootstocks on mineral nutrition, fruit yield, and quality of salinized tomato. J. Plant Nutr. Soil Sci. 174:154–162.

    Article  CAS  Google Scholar 

  • Stong, D. and A. Azarenko. 2000. Rootstock influences the construction costs of ‘Starkspur Supreme Delicious’ apple trees. Fruit Var. J. 54:18–22.

    Google Scholar 

  • Trudgill, D.L., A. Honek, D. Li, and N.M. Van Straalen. 2005. Thermal time - concepts and utility. Ann. Appl. Biol. 146:1–14.

    Article  Google Scholar 

  • Turhan, A., N. Ozmen, S.M. Serbeci, and V. Seniz. 2011. Effects of grafting on different rootstocks on tomato fruit yield and quality. Hortic. Sci. 38:142–149.

    Google Scholar 

  • Vallejos, C.E., J.M. Lyons, R.W. Breidenbach, and M.F. Miller. 1983. Characterization of a differential low-temperature growth response in two species of Lycopersicon: the plastochron as a tool. Planta 159:487–496.

    Article  CAS  PubMed  Google Scholar 

  • Van der Ploeg A. and E. Heuvelink. 2005. Influence of sub-optimal temperature on tomato growth and yield: a review. J. Hortic. Sci. Biotechnol. 80:652–659.

    Google Scholar 

  • Venema, J.H., F. Posthumus, and P.R. Van Hasselt. 1999. Impact of suboptimal temperature on growth, photosynthesis, leaf pigments and carbohydrates of domestic and high-altitude wild Lycopersicon species. J. Plant Physiol. 155:711–718.

    Article  CAS  Google Scholar 

  • Venema, J.H., B.E. Dijk, J.M. Bax, P.R. van Hasselt, and J.T. Elzenga. 2008. Grafting tomato (Solanum lycopersicum) onto the rootstock of a high-altitude accession of Solanum habrochaites improves suboptimal-temperature tolerance. Env. Exp. Bot. 63:359–367.

    Article  Google Scholar 

  • Von Mollendorff, L., G. Jacobs, and O. De Villiers. 1992. Cold storage influences internal characteristics of nectarines during ripening. HortScience 27:1295–1297.

    Google Scholar 

  • Yamaki, S. 2010. Metabolism and accumulation of sugars translocated to fruit and their regulation. J. Jpn. Soc. Hortic. Sci. 79:1–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Riga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riga, P. Effect of rootstock on growth, fruit production and quality of tomato plants grown under low temperature and light conditions. Hortic. Environ. Biotechnol. 56, 626–638 (2015). https://doi.org/10.1007/s13580-015-0042-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-015-0042-0

Additional key words

Navigation