Horticulture, Environment, and Biotechnology

, Volume 56, Issue 4, pp 498–505 | Cite as

Genetic relationships among diverse spray- and standard-type chrysanthemum varieties and their derived radio-mutants determined using AFLPs

  • Ye-Sol Kim
  • Sang Hoon Kim
  • Sang Yeop Sung
  • Dong Sub Kim
  • Jin-Baek Kim
  • Yeong Deuk Jo
  • Si-Yong KangEmail author
Research Report Genetics and Breeding


Gamma-ray irradiation is an important tool in ornamental plant breeding, particularly to induce flower-color variation. Standard-type chrysanthemum ‘Migok’ and spray-type ‘Argus’ have seven and four gamma-ray mutants, respectively, with novel flower colors. Genetic relationships among 26 chrysanthemum varieties or mutants were analyzed using amplified fragment length polymorphisms (AFLPs) with 20 fluorescently-labeled E+3/M+3 primer combinations (PCs). Clustering analysis was carried out using similarity coefficients and unweighted pair group method with arithmetic averages (UPGMA). The 20 PCs produced 2,837 bands, 95.6% of which were polymorphic. E-ACC/M-CAG had the most polymorphic bands (199) and high polymorphic information content, marker index, and resolving power values. Similarity coefficients ranged from 0.63 to 0.97 overall but were 0.73–0.83 in the 11 radio-mutants. The 26 varieties and radio-mutants were divided into four major UPGMA groups; the 11 radio-mutants formed two subgroups and 10 standard-type varieties or radio-mutants were closely clustered into another. The most promising mutant-specific marker candidates were PC E-ACG/M-CAG (47.5%) and E-ACA/M-CAT (44%) for the ‘Migok’ and ‘Argus’ families, respectively.

Additional key words

Dendranthema grandiflorum flower color gamma ray molecular marker mutants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Chakrabarty, D., and S.K. Datta. 2010. Application of RAPD markers for characterization of γ-ray-induced rose mutants and assessment of genetic diversity. Plant Biotechnol. Rep. 4:237–242.CrossRefGoogle Scholar
  2. De Riek, J., J. Dendauw, M. Mertens, M. De Loose, J. Heursel, and E. Van Bockstaele. 1999. Validation of criteria for the selection of AFLP markers to assess the genetic variation of a breeders’ collection of evergreen azaleas. Theor. Appl. Genet. 99:1155–1165.CrossRefGoogle Scholar
  3. Dole, J. M., and H.F. Wilkins. 2004. Floriculture: principles and species. 2nd ed., Prentice-Hall, Upper Saddle River, NJ, USA.Google Scholar
  4. Doyle, J. J. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 19:11–15.Google Scholar
  5. Gupta, A., R. Maurya, R.K. Roy, S.V. Sawant, and H.K. Yadav. 2013. AFLP based genetic relationship and population structure analysis of Canna—An ornamental plant. Sci. Hortic. 154:1–7.CrossRefGoogle Scholar
  6. Hill, M., H. Witsenboer, M. Zabeau, P. Vos, R. Kesseli, and R. Michelmore. 1996. PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp. Theor. Appl. Genet. 93:1202–1210.CrossRefPubMedGoogle Scholar
  7. Hui, X. J., Q.X. Zhang, and Y.K. Gao. 2013, July. The Application of Molecular Marker Technology in the Classification and Breeding of Chrysanthemum. VI Int. Symp. on the Taxon. Cultivated Plants 1035:233–238.Google Scholar
  8. Kang, E. J., Y.M. Lee, S.Y. Sung, B.K. Ha, S.H. Kim, D.S. Kim, and S.Y. Kang. 2013. Analysis of the genetic relationship of gamma-irradiated in vitro mutants derived from standard-type chrysanthemum cv. Migok. Hortic. Environ. Biotechnol. 54:76–81.CrossRefGoogle Scholar
  9. Kardolus, J. P., H.J. van Eck, and R.G. B. van den. 1998. The potential of AFLPs in biosystematics: a first application in Solanum taxonomy (Solanaceae). Plant Syst. Evol. 210:87–103.CrossRefGoogle Scholar
  10. Kim, S. H., W.J. Kim, G.J. Lee, H.S. Song, D.S. Kim, J.B. Kim, and S.Y. Kang. 2009. Genetic relationship of Hibiscus syriacus L. clarified by AFLP and morphological evaluation. Hortic. Environ. Biotechnol. 50:555–565.Google Scholar
  11. Kim, S. H., J.S. Lee, G.J. Lee, J.S. Kim, B.K. Ha, D.S. Kim, and S.Y. Kang. 2013. Analyses of genetic diversity and relationships in four Calanthe taxa native to Korea using AFLP markers. Hortic. Environ. Biotechnol. 54:148–155.CrossRefGoogle Scholar
  12. Kumar, S., Prasad, K. V., and Choudhary, M. L. 2006. Detection of genetic variability among Chrysanthemum radiomutants using RAPD markers. Curr. Sci. 90:1108–1113.Google Scholar
  13. Kwon, S. J., D.H. Kim, M.H. Lim, Y. Long, J.L. Meng, K.B. Lim, and B.S. Park. 2007. Terminal repeat retrotransposon in miniature (TRIM) as DNA markers in Brassica relatives. Mol. Genet. Genomics 278:361–370.CrossRefPubMedGoogle Scholar
  14. Lamseejan, S., P. Jompuk, A. Wongpiyasatid, S. Deeseepan, and P. Kwanthammachart. 2000. Gamma-rays induced morphological changes in chrysanthemum (Chrysanthemum morifolium). Kasetsart J.: Nat. Sci. 34:417–422.Google Scholar
  15. Lee, S. Y., K.S. Kim, and H.Y. Joung. 2002. Genetic similarity and cross compatibility of interspecific hybridization in wild species of carnation. J. Kor. Soc. Hortic. Sci. 43:355–358.Google Scholar
  16. Liu, Kejun and S.V. Muse. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics. 21: 2128–2129.CrossRefPubMedGoogle Scholar
  17. Marsan, P. A., P. Castiglioni, F. Fusari, M. Kuiper, and M. Motto. 1998. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor. Appl. Genet. 96:219–227.CrossRefGoogle Scholar
  18. Maughan, P. J., M.S. Maroof, G.R. Buss, and G.M. Huestis. 1996. Amplified fragment length polymorphism (AFLP) in soybean: species diversity, inheritance, and near-isogenic line analysis. Theor. Appl. Genet. 93:392–401.CrossRefPubMedGoogle Scholar
  19. Parker, P. G., A.A. Snow, M.D. Schug, G.C. Booton, and P.A. Fuerst. 1998. What molecules can tell us about populations: choosing and using a molecular marker. Ecology. 79:361–382.Google Scholar
  20. Prevost, A., and M.J. Wilkinson. 1999. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet. 98:107–112.CrossRefGoogle Scholar
  21. Qin, H., and J. Feng. 2011. Morphological Difference and DNA Diversity Between Flower-colour Sport and Original Cultivar of Chrysanthemum with Small Flowers. J. Northeast Agric. Univ. 18:15–20.Google Scholar
  22. Roein, Z., M.H. Asil, A. Sabouri, and A.R. Dadras. 2014. Genetic structure of Chrysanthemum genotypes from Iran assessed by AFLP markers and phenotypic traits. Plant Syst. Evol. 300:493–503.CrossRefGoogle Scholar
  23. Roldàn-Ruiz, I., J. Dendauw, E. Van Bockstaele, A. Depicker, and M. De Loose. 2000. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol. Breed. 6:125–134.CrossRefGoogle Scholar
  24. Sathyanarayana, N., M. Leelambika, S. Mahesh, and M. Jaheer. 2011. AFLP assessment of genetic diversity among Indian Mucuna accessions. Physiol. Mol. Biol. Plants 17:171–180.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Shao, Q. S., Q.S. Guo, Y.M. Deng, and H.P. Guo. 2010. A comparative analysis of genetic diversity in medicinal Chrysanthemum morifolium based on morphology, ISSR and SRAP markers. Biochem. Syst. Ecol. 38:1160–1169.CrossRefGoogle Scholar
  26. Sharma, S. K., M.R. Knox, and T.H.N. Ellis. 1996. AFLP analysis of the diversity and phylogeny of Lens and its comparison with RAPD analysis. Theor. Appl. Genet. 93:751–758.CrossRefPubMedGoogle Scholar
  27. Sung, S. Y., S.J. Chung, S.H. Kim, W.J. Kim, J.Y. Lee, D.S. Kim, and H.G. Kim. 2010. Analysis of genetic diversity among spray-type chrysanthemum (Dendranthema grandiflorum) ‘Argus’ and its flower-colored mutants. J. Radiat. Ind. 4:171–177.Google Scholar
  28. Sung, S. Y., S.H. Kim, V. Velusamy, Y.M. Lee, B.K. Ha, J.B. Kim, and D.S. Kim. 2013. Comparative gene expression analysis in a highly anthocyanin pigmented mutant of colorless chrysanthemum. Mol. Biol. Rep. 40:5177–5189.CrossRefPubMedGoogle Scholar
  29. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731–2739.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Varshney, R. K., K. Chabane, P.S. Hendre, R.K. Aggarwal, and A. Graner. 2007. Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci. 173:638–649.CrossRefGoogle Scholar
  31. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Van de Lee, M. Hornes, and M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23:4407–4414.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Wang, C. 2004. Advances in the study on chemical constituents of Chrysanthemum morifolium Ramat. J. Chin. Med. Mater. 27:224–229.Google Scholar
  33. Wu, Z. S., H.L. Li, J.H. Liu, Z.R. Zuo, and R.C. Tian. 2007. Analysis of genetic diversity among 65 chrysanthemum cultivars based on AFLP. J. Nanjing For. Univ.: Nat. Sci. 31:67–70.Google Scholar
  34. Yamaguchi, H., A. Shimizu, K. Degi, and T. Morishita. 2008. Effects of dose and dose rate of gamma ray irradiation on mutation induction and nuclear DNA content in chrysanthemum. Breed. Sci. 58: 331–335.CrossRefGoogle Scholar
  35. Zalewska, M., J. Lema-Ruminska, and N. Miler. 2007. In vitro propagation using adventitious buds technique as a source of new variability in chrysanthemum. Sci. Hortic. 113:70–73.CrossRefGoogle Scholar
  36. Zhang, Y., S. Dai, Y. Hong, and X. Song. 2014. Application of genomic SSR locus polymorphisms on the identification and classification of chrysanthemum cultivars in china. PLoS One 9:e104856.CrossRefGoogle Scholar

Copyright information

© Korean Society for Horticultural Science and Springer-Verlag GmbH 2015

Authors and Affiliations

  • Ye-Sol Kim
    • 1
  • Sang Hoon Kim
    • 1
  • Sang Yeop Sung
    • 1
  • Dong Sub Kim
    • 1
  • Jin-Baek Kim
    • 1
  • Yeong Deuk Jo
    • 1
  • Si-Yong Kang
    • 1
    Email author
  1. 1.Advanced Radiation Technology InstituteKorea Atomic Energy Research InstituteJeongeupKorea

Personalised recommendations