Skip to main content
Log in

Effect of grafting on growth, yield and fruit quality of single and double stemmed tomato plants grown hydroponically

Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Vegetative growth traits, and fruit yield and quality of ‘Synda’ tomato plants were compared with those grafted onto ‘King Kong’ rootstock or self-grafted. All experimental plants were trained to have either one stem (single stemmed) or two stems (double stemmed). Values of stem diameter, leaf area, leaf and root fresh weight (FW), and root dry matter (DM) increased with grafting onto ‘King Kong’. Stem length, stem and root FW, and stem DM in double stemmed plants increased. Mean fruit weight, number of fruits, and yield were significantly increased by 11, 17.8, and 27%, respectively, in the grafted plants. Number of fruits and fruit yield increased, while mean fruit weight decreased by 12%, in double stemmed plants. Contents of total soluble solids (TSS) and vitamin C increased in the fruits harvested from the grafted plants. Grafted and double stemmed plants resulted in significant increase in dry matter allocation to different tomato organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Literature Cited

  • Ahn, S.J., Y.J. Im, G.C. Chung, B.H. Cho, and S.R. Suh. 1999. Physiological response of grafted-cucumber leaves and rootstock roots by low root temperature. Sci. Hort. 81:397–408.

    Article  Google Scholar 

  • Besri, M. 2002. Tomato grafting as an alternative to methyl bromide in Morocco. Institut Agronomieque et Veterinaire Hasan II, Morocco.

    Google Scholar 

  • Bletsos, F., C. Thanassoulopoulos, and D. Roupakias. 2003. Effect of grating on growth, yield and verticillium wilt of eggplant. HortScience 38:183–186.

    Google Scholar 

  • Canizares, K.A.L. and R. Goto. 1998. Growth and hybrid produce of cucumber as a function of grafting. Hort. Brasil 16:110–113.

    Google Scholar 

  • Chouka, A.S. and H. Jebari. 1999. Effect of grafting on watermelon on vegetative and root development, production and fruit quality. Acta Hort. 492:85–93.

    Google Scholar 

  • Den Nijs, A.P.M. and L. Smeets. 1987. Analysis of difference in growth of cucumber genotypes under low light conditions in relation to night temperature. Euphytica 36:19–32.

    Article  Google Scholar 

  • Edelstein, M., Y. Burger, C. Horev, A. Porat, A. Meir, and R. Cohen. 2004. Assessing the effect of genetic and anatomic variation of Cucurbita rootstocks on vigor, survival and yield of grafted melons. J. Hort. Sci. Biotechnol. 79:370–374.

    Google Scholar 

  • Estan, M.T., M.M. Martinez-Rodrigues, F. Perez-Alfoce, T.J. Flowers, and M.C. Bolarin. 2005. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J. Exp. Bot. 56:703–712.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Garcia, N., V. Martinez, A. Cerda, and M. Carvajal. 2004. Fruit quality of grafted tomato plants grown under saline conditions. J. Hort. Sci. Biotechnol. 79:995–1001.

    Google Scholar 

  • Flores, F., B.P. Sanchez-Bell, M.T. Estan, M.M. Martinez-Rodriguez, E. Moyano, B. Morales, J.F. Campos, J.O. Garcia-Abellán, M.I. Egea, N. Fernández-Garcia, F. Romojaro, and M.C. Bolarín. 2010. The effectiveness of grafting to improve tomato fruit quality. Sci. Hort. 125:211–217.

    Article  Google Scholar 

  • Heuvelink, E. 1995. Growth, development and yield of a tomato crop: Periodic destructive measurements in a greenhouse. Sci. Hort. 61:77–99.

    Article  Google Scholar 

  • Heuvelink, E. 1996. Tomato growth and yield: Quantitative analysis and synthesis. Diss., Wageningen University, Wageningen, the Netherlands.

    Google Scholar 

  • Heuvelink, E. 2005. Tomatoes. Cabi Publishing, Oxfordshire, UK.

    Book  Google Scholar 

  • Ioannou, N., M. Ioannou, and K. Hadjiparaskevas. 2002. Evaluation of watermelon rootstocks for off-season production in heated greenhouses. Acta Hort. 579:501–506.

    Google Scholar 

  • Kacjan Marsic, N., and J. Osvald. 2004. The influence of grafting on yield of two tomato cultivars (Lycopersicon esculentum Mill.) grown in a plastic house. Acta Agric. Slovenica 82–83.

    Google Scholar 

  • Kato, T. and H. Lou. 1989. Effect of rootstocks on yield, mineral nutrition and hormonal level in xylem sap in eggplant. J. Japan. Soc. Hort. Sci. 58:345–352.

    Article  Google Scholar 

  • Lee, J.M. 1994. Cultivation of grafted vegetables. I. Current status, grafting methods and benefits. HortScience 29:235–239.

    Google Scholar 

  • Lee, J.M. and M. Oda. 2003. Grafting of herbaceous vegetable and ornamental crops. Hort. Rev. 28:61–124.

    Google Scholar 

  • Leonardi, C. and A. Paratore. 1998. Response to salinity of grafted plants of tomato and eggplant. Atti IV Giornate Scientifiche SOI:607-608.

    Google Scholar 

  • Leoni, S., R. Grudina, M. Cadinu, B. Madeddu, and M.C. Garletti. 1990. The influence of four rootstocks on some melon hybrids and a cultivar in greenhouse. Acta Hort. 287:127–134.

    Google Scholar 

  • Lopez-Perez, J.M, I. Le Strange, A. Kaloshiana, and T. Ploega. 2006. Differential response of Mi gene-resistant tomato rootstocks to root knot nematodes (Meloidogyne incognita). Crop Protection 25:382–388.

    Article  Google Scholar 

  • Majedi, M. 1994. Chemical test procedures of food material. Jahad Daneshgahi, Univ. of Tehran. p. 65.

    Google Scholar 

  • Oda, M. 1995. New grafting method for fruit-bearing vegetables in Japan. Japan Agricul. Res. Quart. 29:187–194.

    Google Scholar 

  • Rivero, R.M., J.M. Ruiz, and L. Romero. 2003. Role of grafting in horticultural plants under stress conditions. Food Agricul. Environ. 1:70–74.

    Google Scholar 

  • Romano, D. and A. Paratore. 2001. Effects of grafting on tomato and eggplant. Acta Hort. 559:149–153.

    Google Scholar 

  • Ruiz, J.M. and L. Romero. 1999. Nitrogen efficiency and metabolism in grafted melon plants. Sci. Hort. 81:113–123.

    Article  CAS  Google Scholar 

  • Ruiz, J.M., A. Belakbir, A. Lopez-Cantarero, and L. Romero. 1997. Leaf-macronutrient content and yield in grafted melon plants: A model to evaluate the influence of rootstock genotype. Sci. Hort. 71:227–234.

    Article  Google Scholar 

  • Salehi, R., A. Kashi, and H. Lessani. 2004. The effects of different cucurbit rootstocks on growth and yield of greenhouse cucumber. Iran. J. Hort. Sci. Technol. 5:59–66.

    Google Scholar 

  • Salehi, R., A. Kashi, J.M. Lee, M. Babalar, M. Delshad, S.G. Lee, and Y.C. Huh. 2010. Leaf gas exchanges and mineral ion composition in xylem sap of Iranian melon affected by rootstocks and training methods. HortScience 45:766–770.

    Google Scholar 

  • Santa-Cruz, A., M.M. Martinez-Rodriguez, F. Perez-Alfocea, R. Romero-Aranda, and M.C. Bolarin. 2002. The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Sci. 162:825–831.

    Article  CAS  Google Scholar 

  • Tachibana, S. 1989. Respiratory response of detached roots of lower temperature in cucumber and fig leaf gourd grown at 20°C root temperature. J. Japan. Soc. Hort. Sci. 58:33–337.

    Google Scholar 

  • Teruo, M. and H. Hiromichi. 1994. Mineral contents in melon plants (Cucumis melo L. cv. ‘Prince’) and fruit quality influenced by grafting on squash root stocks and calcium applications in soil. Environ. Cont. Biol. 32:119–123.

    Article  Google Scholar 

  • Traka-Mavrona, E., M. Koutsika-Sotiriou. and T. Pritsa. 2000. Response of squash (Cucurbita spp.) as rootstock for melon (Cucumis melo L). Sci. Hort. 83:353–362.

    Article  Google Scholar 

  • White, R.A.J. 1963. Grafted greenhouse tomatoes give heavier crops. New Zealand J. Agric. 106:247–248.

    Google Scholar 

  • Yetisir, H. and N. Sari. 2004. Effect of hypocotyl morphology on survival rate and growth of watermelon seedlings grafted on rootstocks with different emergence performance at various temperatures. Turk. J. Agric. Forest. 28:231–237.

    Google Scholar 

  • Zerki, M. and L.R. Parsons. 1992. Salinity tolerance of Citrus rootstocks: Effects of salt on root and leaf mineral concentrations. Plant Soil 147:171–181.

    Article  Google Scholar 

  • Zijlstra, S., S.P.C. Groot, and J. Jansen. 1994. Genotypic variation of rootstocks for growth and production in cucumber: Possibilities for improving the root system by plant breeding. Sci. Hort. 56:185–186.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Salehi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmatian, A., Delshad, M. & Salehi, R. Effect of grafting on growth, yield and fruit quality of single and double stemmed tomato plants grown hydroponically. Hortic. Environ. Biotechnol. 55, 115–119 (2014). https://doi.org/10.1007/s13580-014-0167-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-014-0167-6

Additional key words

Navigation