Skip to main content

Metabolite profiles of glucosinolates in cabbage varieties (Brassica oleracea var. capitata) by season, color, and tissue position

Abstract

Glucosinolates (GSLs) are sulfur-containing anionic secondary metabolites that are precursors of biologically active compounds, such as isothiocyanates, in Brassicaceae. The GSLs found in 10 cultivars of cabbage (Brassica oleracea var. capitata) popularly cultivated in Korea and China were identified and quantified. Three GSL classes (6 aliphatic, 1 aromatic, and 3 indolyl) were identified and quantified using high-performance liquid chromatography mass spectrometry (HPLC-MS) and HPLC. The concentration of these GSLs varied by season (spring- and fall-sown), leaf position (inside and outside), and cabbage color (green and red). The average total amounts of GSLs in the inner and outer sections of green and red cabbages ranged from 8.55–13.5 μmol∙g−1 dry weight. The spring-sown cabbages contained significantly higher GSL concentration (2.3–4.3 times higher) compared to their fall-sown counterparts. The inner sections of cabbages contained 1.1- to 1.8-fold greater GSL concentrations than the outer sections. These results indicate that an increase in temperature induces GSL accumulation in both green and red cabbages. The green cabbage cultivars contained significantly higher concentration of GSLs synthesized from homo-methionine, whereas the red cabbage cultivars had greater amounts of GSLs synthesized from dihomo-methionine, which suggests that the activities of enzymes involved in the elongation of homo-methionine are greater in red cabbages. The fall-sown red cabbages also contained 2- to 3-fold higher contents of GSLs synthesized from tryptophan compared to the spring-sown cabbages. In conclusion, the color of cabbage, tissue position of cabbage, temperature, and rainfall were all significantly correlated with the amount of GSL accumulation in cabbages.

This is a preview of subscription content, access via your institution.

Refrerences

  1. Agerbirk, N. and C.E. Olsen. 2012. Glucosinolate structures in evolution. Phytochem. 77:16–45.

    CAS  Article  Google Scholar 

  2. Bommareddy, A., E.R. Hahm, D. Xiao, A.A. Powolny, A.L. Fisher, Y. Jiang, and S.V. Singh. 2009. Atg5 regulates phenethyl isothiocyanate-induced autophagic and apoptotic cell death in human prostate cancer cells. Cancer Res. 69:3704–3712.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  3. Bonnesen, C., I.M. Eggleston, and J.D. Hayes. 2001. Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res. 61:6120–6130.

    CAS  PubMed  Google Scholar 

  4. Cartea, M.E., P. Velasco, S. Obregon, G. Padilla, and A. de Haro. 2008. Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemstry 69:403–410.

    CAS  Article  Google Scholar 

  5. Charron, C.S., A.M. Saxton, and C.E. Sams. 2005. Relationship of climate and genotype to seasonal variation in the glucosinolatemyrosinase system. I. Glucosinolate content in ten cultivars of Brassica oleracea grown in fall and spring seasons. J. Sci. Food Agric. 85:671–681.

    CAS  Article  Google Scholar 

  6. Ciska, E., B. Martyniak-Przybyszewska, and H. Kozlowska. 2000. Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J. Agric. Food Chem. 48:2862–2867.

    CAS  PubMed  Article  Google Scholar 

  7. Conaway, C.C., Y.M. Yang, and F.L. Chung. 2002. Isothiocyanates as cancer chemopreventive agents: Their biological activities and metabolism in rodents and humans. Curr. Drug Metab. 3:233–255.

    CAS  PubMed  Article  Google Scholar 

  8. Divisi, D., S. Di Tommaso, S. Salvemini, M. Garramone, and R. Crisci. 2006. Diet and cancer. Acta Biomedi. 77:118–123.

    Google Scholar 

  9. Fahey, J.W., A.T. Zalcmann, and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51.

    CAS  PubMed  Article  Google Scholar 

  10. Gardiner, J.B., M.J. Morra, C.V. Eberlein, P.D. Brown, and V. Borek. 1999. Allelochemicals released in soil following incorporation of rapeseed (Brassica napus) green manures. J. Agric. Food Chem. 47:3837–3842.

    CAS  PubMed  Article  Google Scholar 

  11. Guo, R., G. Yuan, and Q. Wang. 2011. Effect of sucrose and mannitol on the accumulation of health-promoting compounds and the activity of metabolic enzymes in broccoli sprouts. Sci. Hortic. 128:159–165.

    CAS  Article  Google Scholar 

  12. Harbaum, B., E.M. Hubbermann, C. Wolff, R. Herges, Z. Zhu, and K. Schwarz. 2007. Identification of flavonoids and hydroxycinnamic acids in pak choi varieties (Brassica campestris L. ssp. chinensis var. communis) by HPLC-ESI-MSn and NMR and their quantification by HPLC-DAD.J. Agric. Food Chem. 55:8251–8260.

    CAS  PubMed  Article  Google Scholar 

  13. Hayes, J.D., M.O. Kelleher, and I.M. Eggleston. 2008. The cancer chemopreventive actions of phytochemicals derived from glucosinolates. Eur. J. Nutr. 47(Suppl 2):73–88.

    CAS  PubMed  Article  Google Scholar 

  14. Hong, E. and G.H. Kim. 2008. Anticancer and antimicrobial activities of β-Phenylethyl isothiocyanate in Brassica rapa L. Food Sci. Technol. Res. 14:377–382.

    CAS  Article  Google Scholar 

  15. International Organization for Standardization (ISO). 1992. Rapeseed: Determination of glucosinolates content — Part 1: Method using High performance liquid chromatography. ISO, Geneva, Switzerland, p. 1–9.

    Google Scholar 

  16. Jiang, N., S.O. Chung, J. Lee, D. Ryu, Y.P. Lim, S. Park, C. Lee, J. Song, K. Kim, J.T. Park, and G. An. 2013. Increase of phenolic compounds in new Chinese cabbage cultivar with red phenotype. Hort. Environ. Biotechnol. 54:82–88.

    CAS  Article  Google Scholar 

  17. Kim, S.J., T. Matsuo, M. Watanabe, and Y. Watanabe. 2002. Effect of nitrogen and sulphur application on the glucosinolate content in vegetable turnip rape (Brassica rapa L.). Soil Sci. Plant Nutr. 48:43–49.

    CAS  Article  Google Scholar 

  18. Pappa, G., M. Lichtenberg, R. Iori, J. Barillari, H. Bartsch, and C. Gerhauser. 2006. Comparison of growth inhibition profiles and mechanisms of apoptosis induction in human colon cancer cell lines by isothiocyanates and indoles from Brassicaceae. Mutat. Res. 599:76–87.

    CAS  PubMed  Article  Google Scholar 

  19. Prochaska, H.J., A.B. Santamaria, and P. Talalay. 1992. Rapid detection of inducers of enzymes that protect against carcinogens. Proc. Natl. Acad. Sci. USA 89:2394–2398.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. Rosa, E. and R. Heaney. 1996. Seasonal variation in protein, mineral and glucosinolate composition of Portuguese cabbages and kale. Anim. Feed Sci. Technol. 57:111–127.

    CAS  Article  Google Scholar 

  21. Rosa, E., R. Heaney, G. Fenwick, and C. Portas. 1997. Glucosinolates in crop plants. Hort. Rev. 19:99–215.

    CAS  Google Scholar 

  22. Velasco, P., M.E. Cartea, C. Gonzalez, M. Vilar, and A. Ordas. 2007. Factors affecting the glucosinolate content of kale (Brassica oleracea acephala group). J. Agric. Food Chem. 55:955–962.

    CAS  PubMed  Article  Google Scholar 

  23. Verhoeven, D.T., R.A. Goldbohm, G. van Poppel, H. Verhagen, and P.A. van den Brandt. 1996. Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol. Biomarkers Prev. 5:733–748.

    CAS  PubMed  Google Scholar 

  24. Volden, J., G.B. Bengtsson, and T. Wicklund. 2009. Glucosinolates, L-ascorbic acid, total phenols, anthocyanins, antioxidant capacities and colour in cauliflower (Brassica oleracea L. ssp. botrytis); effects of long-term freezer storage. Food Chem. 112:967–976.

    CAS  Article  Google Scholar 

  25. Zhang, Y., T.W. Kensler, C.G. Cho, G.H. Posner, and P. Talalay. 1994. Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc. Natl. Acad. Sci. USA 91:3147–3150.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. Zhang, Y. and P. Talalay. 1994. Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res. 54:1976–1981.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jong-Tae Park.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, SH., Park, S., Lim, Y.P. et al. Metabolite profiles of glucosinolates in cabbage varieties (Brassica oleracea var. capitata) by season, color, and tissue position. Hortic. Environ. Biotechnol. 55, 237–247 (2014). https://doi.org/10.1007/s13580-014-0009-6

Download citation

Additional key words

  • glucobrassicin
  • homo-methionine
  • secondary metabolite
  • sowing season
  • temperature effect