Skip to main content
Log in

CYTOR-NFAT1 feedback loop regulates epithelial-mesenchymal transition of retinal pigment epithelial cells

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Epithelial mesenchymal transition (EMT) occurring in retinal pigment epithelial cells (RPE) is a crucial mechanism that contributes to the development of age-related macular degeneration (AMD), a pivotal factor leading to permanent vision impairment. Long non-coding RNAs (lncRNAs) have emerged as critical regulators orchestrating EMT in RPE cells. In this study, we explored the function of the lncRNA CYTOR (cytoskeleton regulator RNA) in EMT of RPE cells and its underlying mechanisms. Through weighted correlation network analysis, we identified CYTOR as an EMT-related lncRNA associated with AMD. Experimental validation revealed that CYTOR orchestrates TGF-β1-induced EMT, as well as proliferation and migration of ARPE-19 cells. Further investigation demonstrated the involvement of CYTOR in regulating the WNT5A/NFAT1 pathway and NFAT1 intranuclear translocation in the ARPE-19 cell EMT model. Mechanistically, CHIP, EMSA and dual luciferase reporter assays confirmed NFAT1’s direct binding to CYTOR's promoter, promoting transcription. Reciprocally, CYTOR overexpression promoted NFAT1 expression, while NFAT1 overexpression increased CYTOR transcription. These findings highlight a mutual promotion between CYTOR and NFAT1, forming a positive feedback loop that triggers the EMT phenotype in ARPE-19 cells. These discoveries provide valuable insights into the molecular mechanisms of EMT and its association with AMD, offering potential avenues for targeted therapies in EMT-related conditions, including AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Guymer RH, Campbell TG. Age-related macular degeneration. Lancet (London, England). 2023;401(10386):1459–72. https://doi.org/10.1016/s0140-6736(22)02609-5.

    Article  CAS  PubMed  Google Scholar 

  2. Chew EY. Complement inhibitors for the treatment of geographic atrophy. Lancet (London, England). 2023;402(10411):1396–8. https://doi.org/10.1016/s0140-6736(23)01844-5.

    Article  CAS  PubMed  Google Scholar 

  3. Somasundaran S, Constable IJ, Mellough CB, Carvalho LS. Retinal pigment epithelium and age-related macular degeneration: a review of major disease mechanisms. Clin Exp Ophthalmol. 2020;48(8):1043–56. https://doi.org/10.1111/ceo.13834.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kim J, Lee YJ, Won JY. Molecular mechanisms of retinal pigment epithelium dysfunction in age-related macular degeneration. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms222212298.

    Article  PubMed  PubMed Central  Google Scholar 

  5. van Lookeren CM, LeCouter J, Yaspan BL, Ye W. Mechanisms of age-related macular degeneration and therapeutic opportunities. J Pathol. 2014;232(2):151–64. https://doi.org/10.1002/path.4266.

    Article  Google Scholar 

  6. Wu W, Duan Y, Ma G, Zhou G, Park-Windhol C, D’Amore PA, et al. AAV-CRISPR/Cas9-mediated depletion of vegfr2 blocks angiogenesis in vitro. Invest Ophthalmol Vis Sci. 2017;58(14):6082–90. https://doi.org/10.1167/iovs.17-21902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shu DY, Butcher E, Saint-Geniez M. EMT and EndMT: emerging roles in age-related macular degeneration. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21124271.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ghosh S, Shang P, Terasaki H, Stepicheva N, Hose S, Yazdankhah M, et al. A role for βA3/A1-crystallin in type 2 emt of rpe cells occurring in dry age-related macular degeneration. Invest Ophthalmol Vis Sci. 2018;59(4):104–13. https://doi.org/10.1167/iovs.18-24132.

    Article  Google Scholar 

  9. Llorián-Salvador M, Byrne EM, Szczepan M, Little K, Chen M, Xu H. Complement activation contributes to subretinal fibrosis through the induction of epithelial-to-mesenchymal transition (EMT) in retinal pigment epithelial cells. J Neuroinflammation. 2022;19(1):182. https://doi.org/10.1186/s12974-022-02546-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ishikawa K, Kannan R, Hinton DR. Molecular mechanisms of subretinal fibrosis in age-related macular degeneration. Exp Eye Res. 2016;142:19–25. https://doi.org/10.1016/j.exer.2015.03.009.

    Article  CAS  PubMed  Google Scholar 

  11. Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23(13):1494–504. https://doi.org/10.1101/gad.1800909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang R, Wang L, Li Y, Gui C, Pei Y, Zhou G. Roles and mechanisms of long non-coding RNAs in age-related macular degeneration. Heliyon. 2023;9(11): e22307. https://doi.org/10.1016/j.heliyon.2023.e22307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Blasiak J, Hyttinen JMT, Szczepanska J, Pawlowska E, Kaarniranta K. Potential of long non-coding rnas in age-related macular degeneration. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22179178.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yang S, Yao H, Li M, Li H, Wang F. Long non-coding rna malat1 mediates transforming growth factor beta1-induced epithelial-mesenchymal transition of retinal pigment epithelial cells. PLoS ONE. 2016;11(3): e0152687. https://doi.org/10.1371/journal.pone.0152687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang S, Li H, Yao H, Zhang Y, Bao H, Wu L, et al. Long noncoding RNA ERLR mediates epithelial-mesenchymal transition of retinal pigment epithelial cells and promotes experimental proliferative vitreoretinopathy. Cell Death Differ. 2021;28(8):2351–66. https://doi.org/10.1038/s41418-021-00756-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Newman AM, Gallo NB, Hancox LS, Miller NJ, Radeke CM, Maloney MA, et al. Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks. Gen Med. 2012;4(2):16. https://doi.org/10.1186/gm315.

    Article  CAS  Google Scholar 

  17. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417–25. https://doi.org/10.1016/j.cels.2015.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics (Oxford, England). 2013;29(14):1830–1. https://doi.org/10.1093/bioinformatics/btt285.

    Article  CAS  PubMed  Google Scholar 

  19. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Gene Ont Consort Nature Genet. 2000;25(1):25–9. https://doi.org/10.1038/75556.

    Article  CAS  Google Scholar 

  20. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu W, Meng YF, Xing Q, Tao JJ, Lu J, Wu Y. Identification of lncRNAs involved in biological regulation in early age-related macular degeneration. Int J Nanomed. 2017;12:7589–602. https://doi.org/10.2147/IJN.S140275.

    Article  CAS  Google Scholar 

  22. Hollander AId, Mullins RF, Orozco LD, Voigt AP, Chen H-H, Strunz T, et al. Systems genomics in age-related macular degeneration. Exp Eye Res. 2022. https://doi.org/10.1016/j.exer.2022.109248.

    Article  Google Scholar 

  23. Tao H, Zhang Y, Yuan T, Li J, Liu J, Xiong Y, et al. Identification of an EMT-related lncRNA signature and LINC01116 as an immune-related oncogene in hepatocellular carcinoma. Aging. 2022;14(3):1473–91. https://doi.org/10.18632/aging.203888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Deng Y, Hu H, Xiao L, Cai T, Gao W, Zhu H, et al. Identification of EMT-related lncRNAs as potential prognostic biomarkers and therapeutic targets for pancreatic adenocarcinoma. J Onc. 2022;2022:8259951. https://doi.org/10.1155/2022/8259951.

    Article  CAS  Google Scholar 

  25. Xiao B, Liu L, Chen Z, Li A, Wang P, Xiang C, et al. Identification of epithelial-mesenchymal transition-related prognostic lncRNAs biomarkers associated with melanoma microenvironment. Front Cell Dev Bio. 2021;9: 679133. https://doi.org/10.3389/fcell.2021.679133.

    Article  Google Scholar 

  26. Liu Y, Li M, Yu H, Piao H. lncRNA CYTOR promotes tamoxifen resistance in breast cancer cells via sponging miR-125a-5p. Int J Mol Med. 2020;45(2):497–509. https://doi.org/10.3892/ijmm.2019.4428.

    Article  CAS  PubMed  Google Scholar 

  27. Chen S, Yang M, Wang C, Ouyang Y, Chen X, Bai J, et al. Forkhead box D1 promotes EMT and chemoresistance by upregulating lncRNA CYTOR in oral squamous cell carcinoma. Cancer Lett. 2021;503:43–53. https://doi.org/10.1016/j.canlet.2020.11.046.

    Article  CAS  PubMed  Google Scholar 

  28. Thorfve A, Dehne T, Lindahl A, Brittberg M, Pruss A, Ringe J, et al. Characteristic markers of the WNT signaling pathways are differentially expressed in osteoarthritic cartilage. Cartilage. 2012;3(1):43–57. https://doi.org/10.1177/1947603511414178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bhatt PM, Malgor R. Wnt5a: a player in the pathogenesis of atherosclerosis and other inflammatory disorders. Atherosclerosis. 2014;237(1):155–62. https://doi.org/10.1016/j.atherosclerosis.2014.08.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yue B, Liu C, Sun H, Liu M, Song C, Cui R, et al. A Positive feed-forward loop between LncRNA-CYTOR and Wnt/β-catenin signaling promotes metastasis of colon cancer. Mol Ther J Am Soc Gene Ther. 2018;26(5):1287–98. https://doi.org/10.1016/j.ymthe.2018.02.024.

    Article  CAS  Google Scholar 

  31. Li Q, Wang X, Zhou L, Jiang M, Zhong G, Xu S, et al. A positive feedback loop of long noncoding RNA LINC00152 and KLF5 facilitates breast cancer growth. Front Oncol. 2021;11: 619915. https://doi.org/10.3389/fonc.2021.619915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Binder S, Zipfel I, Friedrich M, Riedel D, Ende S, Kämpf C, et al. Master and servant: LINC00152 - a STAT3-induced long noncoding RNA regulates STAT3 in a positive feedback in human multiple myeloma. BMC Med Genom. 2020;13(1):22. https://doi.org/10.1186/s12920-020-0692-3.

    Article  CAS  Google Scholar 

Download references

Funding

Natural Science Foundation for Young Scientists of Shanxi Province (No.202203021212071), Research Foundation of Shanxi Eye Hospital (No. Q202201) and Scientific Research Project of Shanxi Administration of Traditional Chinese Medicine (No.2023ZYYC053) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohong Zhou.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file (DOCX 1761 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Wang, L., Li, Y. et al. CYTOR-NFAT1 feedback loop regulates epithelial-mesenchymal transition of retinal pigment epithelial cells. Human Cell (2024). https://doi.org/10.1007/s13577-024-01075-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13577-024-01075-w

Keywords

Navigation