Skip to main content
Log in

Functional characterization of variants in human ABCC11, an axillary osmidrosis risk factor

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Human ATP-binding cassette transporter C11 (ABCC11) is a membrane protein exhibiting ATP-dependent transport activity for a variety of lipophilic anions including endogenous substances and xenobiotics such as anti-cancer agents. Accumulating evidence indicates that ABCC11 wild type is responsible for the high-secretion phenotypes in human apocrine glands including wet type of earwax and the risk of axillary osmidrosis. Also, a less-functional variant of ABCC11 was reportedly associated with a risk for drug-induced toxicity in humans. Thus, functional change in ABCC11 may affect individual’s constitution and drug toxicity, which led us to reason that functional validation of genetic variations in ABCC11 should be of importance. Therefore, in addition to p.G180R (a well-characterized non-functional variant of ABCC11), we studied cellular expression and function of 10 variants of ABCC11. In this study, ABCC11 function was evaluated as an ATP-dependent transport of radio labeled-dehydroepiandrosterone sulfate using ABCC11-expressing plasma membrane vesicles. Except for p.G180R, other 10 variants were maturated as an N-linked glycoprotein and expressed on the plasma membrane. We found that six variants impaired the net cellular function of ABCC11. Among them, p.R630W was most influential. Including this identification of a significantly-dysfunctional variant, our findings will extend our understanding of genetic variations and biochemical features of ABCC11 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are provided within the manuscript or supplementary information files.

References

  1. Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 2018;18:452–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Linton KJ. Structure and function of ABC transporters. Physiology (Bethesda). 2007;22:122–30.

    CAS  PubMed  Google Scholar 

  3. Gottesman MM, Ambudkar SV. Overview: ABC transporters and human disease. J Bioenerg Biomembr. 2001;33:453–8.

    Article  CAS  PubMed  Google Scholar 

  4. Toyoda Y, Hagiya Y, Adachi T, Hoshijima K, Kuo MT, Ishikawa T. MRP class of human ATP binding cassette (ABC) transporters: historical background and new research directions. Xenobiotica. 2008;38:833–62.

    Article  CAS  PubMed  Google Scholar 

  5. Kruh GD, Guo Y, Hopper-Borge E, Belinsky MG, Chen ZS. ABCC10, ABCC11, and ABCC12. Pflug Arch. 2007;453:675–84.

    Article  CAS  Google Scholar 

  6. Chen ZS, Guo Y, Belinsky MG, Kotova E, Kruh GD. Transport of bile acids, sulfated steroids, estradiol 17-beta-D-glucuronide, and leukotriene C4 by human multidrug resistance protein 8 (ABCC11). Mol Pharmacol. 2005;67:545–57.

    Article  CAS  PubMed  Google Scholar 

  7. Guo Y, Kotova E, Chen ZS, et al. MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2’,3’-dideoxycytidine and 9’-(2’-phosphonylmethoxyethyl)adenine. J Biol Chem. 2003;278:29509–14.

    Article  CAS  PubMed  Google Scholar 

  8. Yoshiura K, Kinoshita A, Ishida T, et al. A SNP in the ABCC11 gene is the determinant of human earwax type. Nat Genet. 2006;38:324–30.

    Article  CAS  PubMed  Google Scholar 

  9. Miura K, Yoshiura K, Miura S, et al. A strong association between human earwax-type and apocrine colostrum secretion from the mammary gland. Hum Genet. 2007;121:631–3.

    Article  PubMed  Google Scholar 

  10. Inoue Y, Mori T, Toyoda Y, et al. Correlation of axillary osmidrosis to a SNP in the ABCC11 gene determined by the smart amplification process (SmartAmp) method. J Plast Reconstr Aesthet Surg. 2010;63:1369–74.

    Article  CAS  PubMed  Google Scholar 

  11. Toyoda Y, Sakurai A, Mitani Y, et al. Earwax, osmidrosis, and breast cancer: why does one SNP (538G>A) in the human ABC transporter ABCC11 gene determine earwax type? FASEB J. 2009;23:2001–13.

    Article  CAS  PubMed  Google Scholar 

  12. Nakano M, Miwa N, Hirano A, Yoshiura K, Niikawa N. A strong association of axillary osmidrosis with the wet earwax type determined by genotyping of the ABCC11 gene. BMC Genet. 2009;10:42.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Toyoda Y, Gomi T, Nakagawa H, Nagakura M, Ishikawa T. Diagnosis of human axillary osmidrosis by genotyping of the human ABCC11 gene: clinical practice and basic scientific evidence. Biomed Res Int. 2016;2016:7670483.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ishikawa T, Toyoda Y, Yoshiura K, Niikawa N. Pharmacogenetics of human ABC transporter ABCC11: new insights into apocrine gland growth and metabolite secretion. Front Genet. 2013;3:306.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Arlanov R, Lang T, Jedlitschky G, et al. Functional characterization of common protein variants in the efflux transporter ABCC11 and identification of T546M as functionally damaging variant. Pharmacogenom J. 2016;16:193–201.

    Article  CAS  Google Scholar 

  16. Magdy T, Arlanov R, Winter S, et al. ABCC11/MRP8 polymorphisms affect 5-fluorouracil-induced severe toxicity and hepatic expression. Pharmacogenomics. 2013;14:1433–48.

    Article  CAS  PubMed  Google Scholar 

  17. Toyoda Y, Mancikova A, Krylov V, et al. Functional characterization of clinically-relevant rare variants in ABCG2 identified in a gout and hyperuricemia cohort. Cells. 2019;8:363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Toyoda Y, Takada T, Gomi T, Nakagawa H, Ishikawa T, Suzuki H. Clinical and molecular evidence of ABCC11 protein expression in axillary apocrine glands of patients with axillary osmidrosis. Int J Mol Sci. 2017;18:417.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Toyoda Y, Takada T, Miyata H, Ishikawa T, Suzuki H. Regulation of the axillary osmidrosis-associated ABCC11 protein stability by N-linked glycosylation: effect of glucose condition. PLoS One. 2016;11: e0157172.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nakagawa H, Wakabayashi-Nakao K, Tamura A, Toyoda Y, Koshiba S, Ishikawa T. Disruption of N-linked glycosylation enhances ubiquitin-mediated proteasomal degradation of the human ATP-binding cassette transporter ABCG2. FEBS J. 2009;276:7237–52.

    Article  CAS  PubMed  Google Scholar 

  21. Saito H, Toyoda Y, Hirata H, et al. Soy isoflavone genistein inhibits an axillary osmidrosis risk factor ABCC11: in vitro screening and fractional approach for ABCC11-inhibitory activities in plant extracts and dietary flavonoids. Nutrients. 2020;12:2452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Toyoda Y, Takada T, Suzuki H. Febuxostat inhibited axillary osmidrosis risk factor ATP-binding cassette transporter C11 in vitro. J Dermatol. 2020;47:1198–9.

    Article  CAS  PubMed  Google Scholar 

  23. Omasits U, Ahrens CH, Muller S, Wollscheid B. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics. 2014;30:884–6.

    Article  CAS  PubMed  Google Scholar 

  24. Hirokawa T, Boon-Chieng S, Mitaku S. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics. 1998;14:378–9.

    Article  CAS  PubMed  Google Scholar 

  25. Mitaku S, Hirokawa T. Physicochemical factors for discriminating between soluble and membrane proteins: hydrophobicity of helical segments and protein length. Protein Eng. 1999;12:953–7.

    Article  CAS  PubMed  Google Scholar 

  26. Mitaku S, Hirokawa T, Tsuji T. Amphiphilicity index of polar amino acids as an aid in the characterization of amino acid preference at membrane-water interfaces. Bioinformatics. 2002;18:608–16.

    Article  CAS  PubMed  Google Scholar 

  27. Yabuuchi H, Shimizu H, Takayanagi S, Ishikawa T. Multiple splicing variants of two new human ATP-binding cassette transporters, ABCC11 and ABCC12. Biochem Biophys Res Commun. 2001;288:933–9.

    Article  CAS  PubMed  Google Scholar 

  28. Tammur J, Prades C, Arnould I, et al. Two new genes from the human ATP-binding cassette transporter superfamily, ABCC11 and ABCC12, tandemly duplicated on chromosome 16q12. Gene. 2001;273:89–96.

    Article  CAS  PubMed  Google Scholar 

  29. Bera TK, Lee S, Salvatore G, Lee B, Pastan I. MRP8, a new member of ABC transporter superfamily, identified by EST database mining and gene prediction program, is highly expressed in breast cancer. Mol Med. 2001;7:509–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beitz E. T(E)Xtopo: shaded membrane protein topology plots in LAT(E)X2epsilon. Bioinformatics. 2000;16:1050–1.

    Article  CAS  PubMed  Google Scholar 

  31. Jones PM, George AM. The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci. 2004;61:682–99.

    Article  CAS  PubMed  Google Scholar 

  32. Varadi M, Anyango S, Deshpande M, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439–44.

    Article  CAS  PubMed  Google Scholar 

  33. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Toshihisa Ishikawa for his continuous encouragement for this study and for kindly providing the expression vectors for some ABCC11 variants as well as Dr. Hiroshi Suzuki for his support. YT is an Excellent Young Researcher in MEXT Leading Initiative for Excellent Young Researchers.

Funding

This study was supported by JSPS KAKENHI Grant Numbers 15H05610, 19K16441, and 21H03350 (to YT).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Yu Toyoda; methodology: Yu Toyoda; resources: Yu Toyoda; validation: Yu Toyoda; formal analysis: Yu Toyoda; investigation: Yu Toyoda; writing—original draft preparation: Yu Toyoda; writing—review and editing: Yu Toyoda, Hirotaka Matsuo, and Takada Tappei; supervision: Takada Tappei; project administration: Yu Toyoda; funding acquisition: Yu Toyoda; all authors read and approved the final manuscript.

Corresponding author

Correspondence to Yu Toyoda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 828 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toyoda, Y., Matsuo, H. & Takada, T. Functional characterization of variants in human ABCC11, an axillary osmidrosis risk factor. Human Cell (2024). https://doi.org/10.1007/s13577-024-01074-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13577-024-01074-x

Keywords

Navigation