Skip to main content

Advertisement

Log in

Interrogating the estrogen-mediated regulation of adrenocortical Klotho expression using ovariectomized albino rat model exposed to repeated restraint stress

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Reproductive aging is associated with altered stress response and many other menopausal symptoms. Little is known about the adrenal expression of the anti-aging protein Klotho or how it is modulated by estrogen in ovariectomized stressed rats. Fifty-six Wistar female rats were assigned into seven equal groups. Sham-operated (Sham), sham stressed (Sham/STS), ovariectomized (OVR), ovariectomized stressed (OVR/STS), ovariectomized stressed rosiglitazone-treated (OVR/STS/R), ovariectomized stressed estrogen-treated (OVR/STS/E), and ovariectomized stressed estrogen/GW9662 co-treated (OVR/STS/E/GW) groups. All stressed rats were subjected daily to a one-hour restraint stress test for 19 days. At the end of the experiment, blood was collected for serum corticosterone (CORT) analysis. Adrenal tissues were obtained and prepared for polymerase chain reaction (PCR) assay, hematoxylin and eosin (H&E), immunohistochemistry-based identification of Klotho and PPAR-γ, and Oil Red O (ORO) staining. The rise in serum CORT was negligible in the OVR/STS group, in contrast to the Sham/STS group. The limited CORT response in the former group was restored by estrogen and rosiglitazone and blocked by estrogen/GW9226 co-administration. ORO-staining revealed a more evident reduction in the adrenal fat in the OVR/STS group, which was reversed by estrogen and counteracted by GW. Also, there was a comparable expression pattern of Klotho and PPAR-γ in the adrenals. The adrenal Klotho decreased in the OVR/STS group, but was reversed by estrogen treatment. GW9226/estrogen co-treatment interfered with the regulatory effect of estrogen on Klotho. The study suggested modulation of the adrenal Kotho expression by estrogen, in the ovariectomized rats subjected to a restraint stress test. This estrogen-provided adrenal protection might be mediated by PPAR-γ activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

All the research data are present in the published version of the article, and further queries are on reasonable request.

References

  1. Gava G, Orsili I, Alvisi S, Mancini I, Seracchioli R, Meriggiola MC. Cognition, mood and sleep in menopausal transition: the role of menopause hormone therapy. Medicina. 2019;55:668. https://doi.org/10.3390/medicina55100668.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Masoudi M, Ahmadian H, Akbari M, Jalilian N. The correlation of perceived stress and insomnia severity in postmenopausal women. J Kermanshah Univ Med Sci. 2020. https://doi.org/10.5812/jkums.103493.

    Article  Google Scholar 

  3. Russell G, Lightman S. The human stress response. Nat Rev Endocrinol. 2019;15:525–34. https://doi.org/10.1038/s41574-019-0228-0.

    Article  PubMed  Google Scholar 

  4. O’Connor DB, Thayer JF, Vedhara K. Stress and health: a review of psychobiological processes. Annu Rev Psychol Annual Reviews. 2021;72:663–88. https://doi.org/10.1146/annurev-psych-062520-122331.

    Article  Google Scholar 

  5. Ulrich-Lai YM, Ryan KK. PPARγ and stress: implications for aging. Exp Gerontol Elsevier. 2013;48:671–6. https://doi.org/10.1016/j.exger.2012.08.011 .

    Article  CAS  Google Scholar 

  6. Gaffey AE, Bergeman CS, Clark LA, Wirth MM. Aging and the HPA axis: stress and resilience in older adults. Neurosci Biobehav Rev [Internet]. 2016;68:928–45. https://doi.org/10.1016/j.neubiorev.2016.05.036.

    Article  CAS  PubMed  Google Scholar 

  7. Mannan A, Garg N, Singh TG, Kang HK. Peroxisome proliferator-activated receptor-gamma (PPAR-ɣ): molecular effects and its importance as a novel therapeutic target for cerebral ischemic injury. Neurochem Res Springer. 2021;46:2800–31. https://doi.org/10.1007/s11064-021-03402-1.

    Article  CAS  Google Scholar 

  8. Beheshti F, Hosseini M, Hashemzehi M, Soukhtanloo M, Khazaei M, Shafei MN. The effects of PPAR-γ agonist pioglitazone on hippocampal cytokines, brain-derived neurotrophic factor, memory impairment, and oxidative stress status in lipopolysaccharide-treated rats. Iran J Basic Med Sci. 2019;22:940. https://doi.org/10.22038/ijbms.2019.36165.8616.

    PubMed  PubMed Central  Google Scholar 

  9. Mohamed EA, Ahmed HI, Zaky HS, Badr AM. Sesame oil mitigates memory impairment oxidative stress and neurodegeneration in a rat model of Alzheimer’s disease a pivotal role of NF-κB/p38MAPK/BDNF/PPAR-γ pathways. J Ethnopharmacol. 2021;267:113468. https://doi.org/10.1016/j.jep.2020.113468.

    Article  CAS  PubMed  Google Scholar 

  10. Ryan KK, Grayson BE, Jones KR, Schneider AL, Woods SC, Seeley RJ, et al. Physiological responses to acute psychological stress are reduced by the PPARγ agonist rosiglitazone. Endocrinol Oxford Univ Press. 2012;153:1279–87. https://doi.org/10.1210/en.2011-1689.

    CAS  Google Scholar 

  11. Stavniichuk A, Khan MAH, Yeboah MM, Chesnik MA, Jankiewicz WK, Hartmann M, et al. Dual soluble epoxide hydrolase inhibitor/PPAR-γ agonist attenuates renal fibrosis. Prostaglandins Other Lipid Mediat. 2020;150:106472. https://doi.org/10.1016/j.prostaglandins.2020.106472.

    Article  CAS  PubMed  Google Scholar 

  12. Devan AR, Nair B, Kumar AR, Nath LR. An insight into the role of telmisartan as PPAR-γ/α dual activator in the management of nonalcoholic fatty liver disease. Biotechnol Appl Biochem Wiley Online Library. 2022;69:461–8. https://doi.org/10.1002/bab.2123.

    Article  CAS  Google Scholar 

  13. Yu H, Wang L, Huang K, Guo Q, Lin B, Liu Y, et al. PPAR-γ agonist pioglitazone alleviates inflammatory response induced by lipopolysaccharides in osteoblast cells. J Orthop Res Wiley Online Library. 2022;40:2471–9. https://doi.org/10.1002/jor.25279.

    CAS  Google Scholar 

  14. Rao Z, Zheng L, Huang H, Feng Y, Shi R. α-klotho expression in mouse tissues following acute exhaustive exercise. Front Physiol. 2019;10:1498. https://doi.org/10.3389/fphys.2019.01498.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hutson DD, Gurrala R, Ogola BO, Zimmerman MA, Mostany R, Satou R, et al. Estrogen receptor profiles across tissues from male and female rattus norvegicus. Biol Sex Differ BioMed Central. 2019;10:1–13. https://doi.org/10.1186/s13293-019-0219-9.

    Google Scholar 

  16. Hammoudi N, Boulahbel S, Chentouh S, Bentayeb Y, Djebaili H, Hadjeris AW, et al. Immunolocalization of adrenal estrogen receptors (ERs) in pregnant rabbits treated with organic extract of bunium incrassatum. J Biochem Technol. 2021;12(2):24–32. https://jbiochemtech.com/80jYiklt8c.

    Article  CAS  Google Scholar 

  17. Lagunas N, Fernández-García JM, Blanco N, Ballesta A, Carrillo B, Arevalo M-A, et al. Organizational effects of estrogens and androgens on estrogen and androgen receptor expression in pituitary and adrenal glands in adult male and female rats. Front Neuroanat. 2022. https://doi.org/10.3389/fnana.2022.902218.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tan Z, Li Y, Guan Y, Iqbal J, Wang C, Yan R, et al. Klotho regulated by estrogen plays a key role in sex differences in stress resilience in rats. Int J Mol Sci. 2023;24:1206. https://doi.org/10.3390/ijms24021206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pignatti E, Flück CE. Adrenal cortex development and related disorders leading to adrenal insufficiency. Mol Cell Endocrinol [Internet]. 2021;527:111206. https://doi.org/10.1016/j.mce.2021.111206.

    Article  CAS  PubMed  Google Scholar 

  20. Gonçalves BSM, Mariotti FFN, Ponsone G, Soares TAA, Perão PCBG, Mônico-Neto M, et al. High and fluctuating levels of ovarian hormones induce an anxiogenic effect, which can be modulated under stress conditions Evidence from an assisted reproductive rodent model. Horm Behav [Internet]. 2022;137:105087. https://doi.org/10.1016/j.yhbeh.2021.105087.

    Article  PubMed  Google Scholar 

  21. Hussien NI, Emam HT. The potential protective effects of erythropoietin and estrogen on renal ischemia reperfusion injury in ovariectomized rats. Alexandria J Med. 2016;52:325–35. https://doi.org/10.1016/j.ajme.2015.12.001.

    Article  Google Scholar 

  22. Sexton HG, Olszewski NA, Risher M-L. The effects of rosiglitazone on task specific anxiety-like behavior and novelty seeking in a model of chronic adolescent unpredictable stress. Front Behav Neurosci. 2022;16:830310. https://doi.org/10.3389/fnbeh.2022.830310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gaspar JC, Okine BN, Llorente-Berzal A, Roche M, Finn DP. Pharmacological blockade of PPAR isoforms increases conditioned fear responding in the presence of nociceptive tone. Molecules. 2020;25:1007. https://doi.org/10.3390/molecules25041007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. NIH. Guide for the Care and Use of Laboratory Animals [Internet]. 8th ed. New York, USA: National Academies Press (US); 2011 [cited 2019 Mar 18]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21595115

  25. Rodrigues-Santos I, Kalil-Cutti B, Anselmo-Franci JA. Low corticosterone response to stress in a perimenopausal rat model is associated with the hypoactivation of pamp region of the paraventricular nucleus and can be corrected by exogenous progesterone supplementation. Neuroendocrinology Karger Publishers. 2022;112:467–80. https://doi.org/10.1159/000518336.

    Article  CAS  Google Scholar 

  26. Pal G, Behl T, Rohil V, Khandelwal M, Gupta G, Jena J. Evaluation of oxidative stress and its modulation by L-arginine and L-ascorbic acid in repetitive restraint stress model in Wistar rats. Obes Med. 2020;17:100172. https://doi.org/10.1016/j.obmed.2019.100172.

    Article  Google Scholar 

  27. Kim S, Foong D, Cooper MS, Seibel MJ, Zhou H. Comparison of blood sampling methods for plasma corticosterone measurements in mice associated with minimal stress-related artefacts. Steroids [Internet]. 2018;135:69–72. https://doi.org/10.1016/j.steroids.2018.03.004.

    Article  CAS  PubMed  Google Scholar 

  28. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 ΔΔCT method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  29. Bancroft JD, Lyton C. The hematoxylins and eosin. In: Suvarna SK, Bancroft JD, Lyton C, editors. Bancroft’s theory Pract Histol Tech. 8th ed. Elsevier; 2018. p. 126–38. https://doi.org/10.1016/C2015-0-00143-5.

    Google Scholar 

  30. Dey P. Basic and advanced laboratory techniques in histopathology and cytology. Springer; 2018. https://doi.org/10.1007/978-981-10-8252-8.

  31. Kiernan JA. Immunohistochemistry. In: Kiernan J, editor. Histol Histochem methods Theory Pract. 4th ed. Scion Publishing Ltd; 2015. p. 454–90.

    Google Scholar 

  32. Sugiyama A, Sun J, Ueda K, Furukawa S, Takeuchi T. Effect of methotrexate on cerebellar development in infant rats. J Vet Med Sci. 2015;77:789–97. https://doi.org/10.1292/jvms.14-0475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berger I, Werdermann M, Bornstein SR, Steenblock C. The adrenal gland in stress–adaptation on a cellular level. J Steroid Biochem Mol Biol Elsevier. 2019;190:198–206. https://doi.org/10.1016/j.jsbmb.2019.04.006.

    Article  CAS  Google Scholar 

  34. Tseilikman V, Komelkova M, Kondashevskaya MV, Manukhina E, Downey HF, Chereshnev V, et al. A rat model of post-traumatic stress syndrome causes phenotype-associated morphological changes and hypofunction of the adrenal gland. Int J Mol Sci. 2021;22:13235. https://doi.org/10.3390/ijms222413235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol. 2016;6:603. https://doi.org/10.1002/cphy.c150015.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pacwa A, Górowska-Wójtowicz E, Ptak A, Pawlicki P, Milon A, Sekula M, et al. Interplay between estrogen related receptors and steroidogenesis controlling molecules in adrenals in vivo and in vitro study. Acta Histochem. 2018;120:456–67. https://doi.org/10.1016/j.acthis.2018.05.007.

    Article  CAS  PubMed  Google Scholar 

  37. Abonar M, Aboraya A, Elbakary N, Elwan W. Effect of energy drink on the pancreas of adult male albino rat and the possible protective role of avocado oil histological and immunohistochemical study. Egypt J Histol. 2022;45:386–403. https://doi.org/10.21608/ejh.2021.59941.1425.

    Google Scholar 

  38. Zaki SM, Abdelgawad FA, El-Shaarawy EAA, Radwan RAK, Aboul-Hoda BE. Stress-induced changes in the aged-rat adrenal cortex Histological and histomorphometric study. Folia Morphol (Warsz). 2018;77:629–41. https://doi.org/10.5603/FM.a2018.0035.

    CAS  PubMed  Google Scholar 

  39. Sun Y, Leng P, Guo P, Gao H, Liu Y, Li C, et al. G protein coupled estrogen receptor attenuates mechanical stress-mediated apoptosis of chondrocyte in osteoarthritis via suppression of piezo1. Mol Med. 2021;27:96. https://doi.org/10.1186/s10020-021-00360-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fekri K, Mahmoudi J, Sadigh-Eteghad S, Farajdokht F, Nayebi AM. Coumestrol alleviates oxidative stress, apoptosis and cognitive impairments through hippocampal estrogen receptor-beta in male mouse model of chronic restraint stress. Pharm Sci. 2022;28:260–74. https://doi.org/10.34172/PS.2021.44.

    CAS  Google Scholar 

  41. Xu X, Hao Y, Zhong Q, Hang J, Zhao Y, Qiao J. Low KLOTHO level related to aging is associated with diminished ovarian reserve. Fertil Steril Elsevier. 2020;114:1250–5. https://doi.org/10.1016/j.fertnstert.2020.06.035.

    Article  CAS  Google Scholar 

  42. Cheng L, Zhang L, Yang J, Hao L. Activation of peroxisome proliferator-activated receptor γ inhibits vascular calcification by upregulating Klotho. Exp Ther Med Spandidos Publications. 2017;13:467–74. https://doi.org/10.3892/etm.2016.3996.

    Article  CAS  Google Scholar 

  43. Maquigussa E, Paterno JC, de Oliveira Pokorny GH, da Silva Perez M, Varela VA, da Silva Novaes A, et al. Klotho and PPAR gamma activation mediate the renoprotective effect of losartan in the 5/6 nephrectomy model. Front Physiol. 2018;9:1033. https://doi.org/10.3389/fphys.2018.01033.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang L-Y, Liu X-Y, Su A, Hu Y-Y, Zhang J-G, Xian X-H, et al. Klotho upregulation via pparγ contributes to the induction of brain ischemic tolerance by cerebral ischemic preconditioning in rats. Cell Mol Neurobiol Springer. 2023;43:1355–67. https://doi.org/10.1007/s10571-022-01255-y.

    Article  CAS  Google Scholar 

  45. Singh AP, Singh N, Pathak D, Bedi PMS. Estradiol attenuates ischemia reperfusion-induced acute kidney injury through PPAR-γ stimulated eNOS activation in rats. Mol Cell Biochem Springer. 2019;453:1–9. https://doi.org/10.1007/s11010-018-3427-4.

    Article  CAS  Google Scholar 

  46. Sato H, Sugai H, Kurosaki H, Ishikawa M, Funaki A, Kimura Y, et al. The effect of sex hormones on peroxisome proliferator-activated receptor gamma expression and activity in mature adipocytes. Biol Pharm Bull. 2013;36:564–73. https://doi.org/10.1248/bpb.b12-00868.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao Y, Tang S, Lin R, Zheng T, Li D, Chen X, et al. Deoxynivalenol exposure suppresses adipogenesis by inhibiting the expression of peroxisome proliferator-activated receptor gamma 2 (PPARγ2) in 3T3-L1 cells. Int J Mol Sci. 2020;21:6300. https://doi.org/10.3390/ijms21176300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang H, Li Y, Fan Y, Wu J, Zhao B, Guan Y, et al. Klotho is a target gene of PPAR-γ. Kidney Int Elsevier. 2008;74:732–9. https://doi.org/10.1038/ki.2008.244.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Researchers Supporting Project number (RSPD2024R759), King Saud University, Riyadh, Saudi Arabia.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Ahmed Morsi: Conceptualization, Methodology, formal analysis, Writing- Reviewing and Editing. Mohamed Salim: project administration, investigation, visualization, resources, and image photography. Ezat Mersal, Ahmed Abdelmoneim, and Mohamed Sofii: supervision, formal analysis, Writing—Original Draft, and resources. Ghaiath Hussein: Revision of the experimental procedures, ethical issues, and final review and editing. Khalid Ibrahim: data curation, validation, resources.

Corresponding author

Correspondence to Ahmed A. Morsi.

Ethics declarations

Conflict of interest

The authors have stated no conflicting interests.

Ethical approval

The study proposal and the experimental procedures were approved by the Fayoum University Institutional Animal Care and Use Committee (FU-IACUC-AEC2343).

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morsi, A.A., Mersal, E.A., Abdelmoneim, A.M. et al. Interrogating the estrogen-mediated regulation of adrenocortical Klotho expression using ovariectomized albino rat model exposed to repeated restraint stress. Human Cell (2024). https://doi.org/10.1007/s13577-024-01069-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13577-024-01069-8

Keywords

Navigation