Skip to main content

Advertisement

Log in

Receptor tyrosine kinase gene expression profiling of orbital rhabdomyosarcoma unveils MET as a potential biomarker and therapeutic target

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Receptor tyrosine kinases (RTKs) serve as molecular targets for the development of novel personalized therapies in many malignancies. In the present study, expression pattern of receptor tyrosine kinases and its clinical significance in orbital RMS has been explored. Eighteen patients with histopathologically confirmed orbital RMS formed part of this study. Comprehensive q-PCR gene expression profiles of 19 RTKs were generated in the cases and controls. The patients were followed up for 59.53 ± 20.93 years. Clustering and statistical analysis tools were applied to identify the significant combination of RTKs associated with orbital rhabdomyosarcoma patients. mRNA overexpression of RTKs which included MET, AXL, EGFR was seen in 60–80% of cases; EGFR3, IGFR2, FGFR1, RET, PDGFR1, VEGFR2, PDGFR2 in 30–60% of cases; and EGFR4, FGFR3,VEGFR3 and ROS,IGFR1, EGFR1, FGFR2, VEGFR1 in 10–30% of cases. Immunoexpression of MET was seen in 89% of cases. A significant association was seen between MET mRNA and its protein expression. In all the cases MET gene expression was associated with worst overall survival (P = 0.03).There was a significant correlation of MET mRNA expression with RET, ROS, AXL, FGFR1, FGFR3, PDGFR1, IGFR1, VEGFR2, and EGFR3 genes. Association between MET gene and collective expression of RTKs was further evaluated by semi-supervised gene cluster analysis and Principal component analysis, which showed well-separated tumor clusters. MET gene overexpression could be a useful biomarker for identifying high risk orbital rhabdomyosarcoma patients. Well-separated tumor clusters confirmed the association between MET gene and collective expression of RTK genes. Therefore, the therapeutic potential of multi-kinase inhibitors targeting MET and the 9 other significant RTKs needs to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bejar DE, Huh WW. Rhabdomyosarcoma in adolescent and young adult patients:currentperspectives. Health Med Ther. 2014;5:115–25.

    Google Scholar 

  2. Shields JA, Shields CL. Rhabdomyosarcoma: review for the ophthalmologist. Surv Ophthalmol. 2003;48(1):39–57.

    PubMed  Google Scholar 

  3. Terezakis SA, Wharam MD. Radiotherapy for rhabdomyosarcoma:indications and outcome. Clin Oncol R CollRadiol. 2013;25:27–35.

    CAS  Google Scholar 

  4. Viswanathan S, George S, Ramadwar M, et al. Extraconal orbital tumors in children—a spectrum. Virchows Arch. 2009;454:703–13.

    PubMed  Google Scholar 

  5. Tapscott SJ, Thayer MJ, Weintraub H. Deficiency in rhabdomyosarcomas of a factor required for MyoD activity and myogenesis. Science. 1993;259:1450–3.

    PubMed  CAS  Google Scholar 

  6. Sohaib SA, Moseley I, Wright JE. Orbital rhabdomyosarcoma-the radiological characteristics. Clin Radiol. 1998;53:357–62.

    PubMed  CAS  Google Scholar 

  7. Maurer HM, Beltangady M, Gehan EA, et al. The intergroup rhabdomyosarcoma study-IA final report. Cancer. 1988;61:209–20.

    PubMed  CAS  Google Scholar 

  8. Manning G, Whyte DB, Martinez R, et al. The protein kinase complement of the human genome. Science. 2002;298:1912–34.

    PubMed  CAS  Google Scholar 

  9. Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene. 2000;19:5548–57.

    PubMed  CAS  Google Scholar 

  10. Zhenfang Du, Lovly CM. Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer. 2018;17:58.

    Google Scholar 

  11. Krug M, Hilgeroth A. Recent advances in the development of multi- kinase inhibitors. Mini Rev Med Chem. 2008;8(13):1312–27.

    PubMed  CAS  Google Scholar 

  12. Broekman F, Giovannetti E, Peters G. Tyrosine kinase inhibitors: multi- targeted or single-targeted? World J Clin Oncol. 2011;2(2):80–93.

    PubMed  PubMed Central  Google Scholar 

  13. Cho JH, Lim SH, An HJ, et al. Osimertinib for patients with non- small-cell lung cancer harboring uncommon EGFR mutations: a multicenter, open-label, phase II trial (KCSG-LU15-09). J Clin Oncol. 2020;38(5):488–95.

    PubMed  CAS  Google Scholar 

  14. Janne PA, Neal JW, Camidge DR, et al. Antitumor activity of TAK-788 in NSCLC with EGFR exon 20 insertions. J Clin Oncol. 2019;37(15_suppl):9007.

    Google Scholar 

  15. Le X, Goldman JW, Clarke JM, et al. Poziotinib shows activity and durability of responses in subgroups of previously treated EGFR exon 20 NSCLC patients. J Clin Oncol. 2020;38(15_suppl):9514.

    Google Scholar 

  16. Chia P, Mitchell P, Dobrovic A, et al. Prevalence and natural history of ALK positive non-small-cell lung cancer and the clinical impact of targeted therapy with ALK inhibitors. ClinEpidemiol. 2014;6:423–32.

    Google Scholar 

  17. Shaw A, Ou S, Bang Y, et al. Crizotinib in ROS1-rearranged non-small- cell lung cancer. N Engl J Med. 2014;371(21):1963–71.

    PubMed  PubMed Central  Google Scholar 

  18. Stirrups R. Neratinib and capecitabine for breast cancer brain metasta- ses. Lancet Oncol. 2019;20(4): e197.

    PubMed  Google Scholar 

  19. Nasrazadani A, Brufsky A. Neratinib: the emergence of a new player in the management of HER2+ breast cancer brain metastasis. Future Oncol. 2020;16(7):247–54.

    PubMed  CAS  Google Scholar 

  20. Bruix J, Qin S, Merle P, et al. Regorafenib for patients with hepatocel- lular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389(10064):56–66.

    PubMed  CAS  Google Scholar 

  21. Abou-Alfa G, Meyer T, Cheng A, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018;379(1):54–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Li Q, Qin S, Gu S, et al. Apatinib as second-line therapy in Chinese patients with advanced hepatocellular carcinoma: a randomized, placebo-controlled, double-blind, phase III study. J Clin Oncol. 2020;38(15):4507.

    Google Scholar 

  23. Choueiri T, Escudier B, Powles T, et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a ran- domised, open-label, phase 3 trial. Lancet Oncol. 2016;17(7):917–27.

    PubMed  CAS  Google Scholar 

  24. Han B, Li K, Wang Q, et al. Effect of anlotinib as a third-line or further treatment on overall survival of patients with advanced non-small cell lung cancer: the ALTER 0303 phase 3 randomized clinical trial. JAMA Oncol. 2018;4(11):1569–75.

    PubMed  PubMed Central  Google Scholar 

  25. Liu Y, Hu X, Jiang J, et al. A prospective study of apatinib in patients with extensive-stage small cell lung cancer after failure of two or more lines of chemotherapy. Oncologist. 2020;25(5):e833–42.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Poddubskaya E, Baranova M, Allina D, et al. Personalized prescription of tyrosine kinase inhibitors in unresectable metastatic cholangiocar- cinoma. Exp Hematol Oncol. 2018;7:21.

    PubMed  PubMed Central  Google Scholar 

  27. Gainor JFCG, Kim D-W, et al. Registrational dataset from the phase I/ II ARROW trial of pralsetinib (BLU-667) in patients (pts) with advanced RET fusion+ non-small cell lung cancer (NSCLC). J Clin Oncol. 2020;38(15_suppl):9515.

    Google Scholar 

  28. Subbiah V, Hu MIN, Gainor JF, et al. Clinical activity of the RET inhibi- tor pralsetinib (BLU-667) in patients with RET fusion+ solid tumors. J Clin Oncol. 2020;38(15_suppl):109.

    Google Scholar 

  29. Drilon A, Clark J, Weiss J, et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat Med. 2020;26(1):47–51.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Pal SK, Rosenberg JE, Hoffman-Censits JH, et al. Efficacy of BGJ398, a fibroblast growth factor receptor 1–3 inhibitor, in patients with previ- ously treated advanced urothelial carcinoma with FGFR3 alterations. Cancer Discov. 2018;8(7):812.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. AbbaspourBabaei M, Kamalidehghan B, Saleem M, et al. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells. Drug Des DevelTher. 2016;10:2443–59.

    Google Scholar 

  32. Hodi FS, Corless CL, Giobbie-Hurder A, et al. Imatinib for melano- mas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J ClinOncol. 2013;31(26):3182–90.

    CAS  Google Scholar 

  33. Mei L, Du W, Idowu M, et al. Advances and challenges on management of gastrointestinal stromal tumors. Front Oncol. 2018;8:135.

    PubMed  PubMed Central  Google Scholar 

  34. Lawrence WJ, Anderson JR, Gehan EA, et al. Pretreatment TNM staging of childhood rhabdomyosarcoma: a report of the intergroup rhabdomyosarcoma study group. Cancer. 1997;80(6):1165–70.

    PubMed  Google Scholar 

  35. Hou J, Dong J, Sun L, et al. Inhibition of phosphorylated c-Met in rhabdomyosarcoma cell lines by a small molecule inhibitor SU11274. J Transl Med. 2011;9:64.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Lim L, Wu CC, Hsu YT, et al. Clinical significance of c-Met and phospho-c-Met (Tyr1234/1235) in ovarian cancer. Taiwan J Obstet Gynecol. 2019;2019(58):105e110.

    Google Scholar 

  37. Smolen GA, Sordella R, Muir B, et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA- 665752. Proc Natl Acad Sci USA. 2006;103:2316–21.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Lutterbach B, Zeng Q, Davis LJ, et al. Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Res. 2007;67:2081–8.

    PubMed  CAS  Google Scholar 

  39. Anastasi S, Giordano S, Sthandier O, et al. A natural hepatocyte growth factor/scatter factor autocrine loop in myoblast cells and the effect of the constitutive met kinase activation on myogenic differentiation. J Cell Biol. 1997;137(5):1057–68.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Camassei FD, McDowell HP, Deloris MA, et al. Clinical significance of CXC chemokine receptor-4 and c-Met in childhood rhabdomyosarcoma. Clin Cancer Res. 2008;14(13):4119–27.

    Google Scholar 

  41. Paccez JD, Vogelsang M, Parker MI, et al. The receptor tyrosine kinase Axl in cancer: Biological functions and therapeutic implications. Int J Cancer. 2014;134:1024–33.

    PubMed  CAS  Google Scholar 

  42. Huang F, Hurlburt W, Greer A, et al. Differential mechanisms of acquired resistance to insulin-like growth factor-i receptor antibody therapy or to a small-molecule inhibitor, BMS- 754807, in a human rhabdomyosarcoma model. Cancer Res. 2010;70:7221–31.

    PubMed  CAS  Google Scholar 

  43. Nicholson RI, Gee JMW, Harper ME. EGFR and cancer prognosis. Eur J Cancer. 2001;37:S9–15.

    PubMed  CAS  Google Scholar 

  44. Selvaggi G, Novello S, Torri V, et al. Epidermal growth factor receptor overexpression correlates with a poor prognosis in completely resected non-small-cell lung cancer. Ann Oncol. 2004;15:28–32.

    PubMed  CAS  Google Scholar 

  45. Grass B, Wachtel M, Behnke S, et al. Immunohistochemical detection of EGFR, fibrillin-2, P-cadherin and AP2β as biomarkers for rhabdomyosarcoma diagnostics. Histopathology. 2009;54(7):873–9.

    PubMed  Google Scholar 

  46. Ganti R, Skapek SX, Zhang J, et al. Expression and genomic status of EGFR and ErbB-2 in alveolar and embryonalrhabdomyosarcoma. Mod Pathol. 2006;19(9):1213–20.

    PubMed  CAS  Google Scholar 

  47. Wachtel M, Runge T, Leuschner I, et al. Subtype and prognostic classification of rhabdomyosarcoma by immunohistochemistry. J Clin Oncol. 2006;24(5):816–22.

    PubMed  CAS  Google Scholar 

  48. Ricci C, Landuzzi L, Rossi I, et al. Expression of HER/erbB family of receptor tyrosine kinases and induction of differen- tiation by glial growth factor 2 in human rhabdomyosarcoma cells. Int J Cancer. 2000;87(1):29–36.

    PubMed  CAS  Google Scholar 

  49. Giovanni CD, Landuzzi L, Frabetti F, et al. Antisense epidermal growth factor receptor transfection impairs the proliferative ability of human rhabdomyosarcoma cells. Can Res. 1996;56(17):3898–901.

    Google Scholar 

  50. Danz YZ, Zhang Y, Li JP, et al. High VEGFR1/2 expression levels are predictors of poor survival in patients with cervical cancer. Medicine. 2017;96(1):e5772.

    Google Scholar 

  51. Juttner S, Wissmann C, Jons T, et al. Vascular endothelial growth factor-D and its receptor VEGFR-3: two novel independent prognostic markers in gastric adenocarcinoma. J ClinOncol. 2006;24:228–40.

    Google Scholar 

  52. Arinaga M, Noguchi T, Takeno S, et al. Clinical significance of vascular endothelial growth factor C and vascular endothelial growth factor receptor 3 in patients with nonsmall cell lung carcinoma. Cancer. 2003;97:457–64.

    PubMed  CAS  Google Scholar 

  53. Van Trappen PO, Steele D, Lowe DG, et al. Expression of vascular endothelial growth factor (VEGF)-C and VEGF-D, and their receptor VEGFR-3, during different stages of cervical carcinogenesis. J Pathol. 2003;201:544–54.

    PubMed  Google Scholar 

  54. Witte D, Thomas A, Ali N, et al. Expression of the vascular endothelial growth factor receptor-3 (VEGFR-3) and its ligand VEGF-C in human colorectal adenocarcinoma. Anticancer Res. 2002;22:1463–6.

    PubMed  CAS  Google Scholar 

  55. Kurmasheva RT, Dudkin L, Billups C, et al. The insulin-like growth factor-1 receptor-targeting antibody, CP-751,871, suppresses tumor-derived VEGF and synergizes with rapamycin in models of childhood sarcoma. Can Res. 2009;69(19):7662–71.

    CAS  Google Scholar 

  56. Maris M, Courtright J, Houghtonetal PJ. Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Pediatr Blood Cancer. 2008;50(3):581–7.

    PubMed  Google Scholar 

  57. Vilmar A, Santoni-Rugiu E, Garcia-Foncillas J, et al. Insulin-like growth factor receptor 1 mRNA expression as a prognostic marker in advanced non-small cell lung cancer. Anticancer Res. 2014;34:2991–6.

    PubMed  CAS  Google Scholar 

  58. Thariat J, Bensadoun RJ, Etienne-Grimaldi MC, et al. Contrasted outcomes to gefitinib on tumoral IGF1R expression in head and neck cancer patients receiving postoperative chemoradiation (GORTEC trial 2004–02). Clin Cancer Res. 2012;18:5123–33.

    PubMed  CAS  Google Scholar 

  59. Singh SK, Tan QW, Brito C, et al. Insulin-like growth factors I and II receptors in the breast cancer survival disparity among African-American women. Growth Horm IGF Res. 2010;20:245–54.

    Google Scholar 

  60. Makawita S, Ho M, Durbin AD, et al. Expression of insulin-like growth factor pathway proteins in rhabdomyosarcoma: IGF-2 expression is associated with translocation-negative tumors. Pediatr Dev Pathol. 2009;12(2):127–35.

    PubMed  CAS  Google Scholar 

  61. Petricoin EF, Espina V, Araujo RP, et al. Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Can Res. 2007;67(7):3431–40.

    CAS  Google Scholar 

  62. Ayalon D, Glaser T, Werner H. Transcriptional regulation of IGF-I receptor gene expression by the PAX3- FKHR oncoprotein. Growth Hormon IGF Res. 2001;11(5):289–97.

    CAS  Google Scholar 

  63. Giri D, Ropiquet F, Ittmann M. Alterations in expression of basic broblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. Clin Cancer Res. 1999;5:1063–71.

    PubMed  CAS  Google Scholar 

  64. Theillet C, Adelaide J, Louason G, et al. FGFRI and PLAT genes and DNA amplication at 8p12 in breast and ovarian cancers. Genes Chromosom Cancer. 1993;7:219–26.

    PubMed  CAS  Google Scholar 

  65. Weiss J, Sos ML, Seidel D, et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl Med. 2010;2:62–93.

    Google Scholar 

  66. Byron SA, Gartside M, Powell MA, et al. FGFR2 point mutations in 466 endometrioid endometrial tumors: relationship with MSI, KRAS, PIK3CA, CTNNB1 mutations and clinicopathological features. PLoS ONE. 2012;7: e30801.

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Antoniou AC, Spurdle AB, Sinilnikova OM, et al. Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Am J Hum Genet. 2008;82:937–48.

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Jang JH, Shin KH, Park JG. Mutations in broblast growth factor receptor 2 and broblast growth factor receptor 3 genes associated with human gastric and colorectal cancers. Cancer Res. 2001;61:3541–3.

    PubMed  CAS  Google Scholar 

  69. Van Rhijn BW, Montironi R, Zwartho EC, et al. Frequent FGFR3 mutations in urothelial papilloma. J Pathol. 2002;198:245–51.

    PubMed  Google Scholar 

  70. Chesi M, Nardini E, Brents LA, et al. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of broblast growth factor receptor 3. Nat Genet. 1997;16:260–4.

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Goldstein M, Meller I, Orr-Urtreger A. FGFR1 over-expression in primary rhabdomyosarcoma tumors is associated with hypomethylation of a 5′ CpG island and abnormal expression of the AKT1, NOG, and BMP4 genes. Genes Chromosom Cancer. 2007;46(11):1028–38.

    PubMed  CAS  Google Scholar 

  72. Hirotsu M, Setoguchi T, Matsunoshita Y, et al. Tumour formation by single fibroblast growth factor receptor 3- positive rhabdomyosarcoma-initiating cells. Br J Cancer. 2009;101(12):2030–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Taylor JG, Cheuk AT, Tsang PS, et al. Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models. J Clin Investig. 2009;119(11):3395–407.

    PubMed  CAS  Google Scholar 

  74. Oseini AM, Roberts LR. PDGFR alpha: a new therapeutic target in the treatment of hepatocellular carcinoma? Expert OpinTher Targets. 2009;13:443.

    CAS  Google Scholar 

  75. Ostman A, Heldin CH. PDGF receptors as targets in tumor treatment. Adv Cancer Res. 2007;97:247.

    PubMed  Google Scholar 

  76. Ozawa T, Brennan CW, Wang L, et al. PDGFRA gene rearrangements are frequent genetic events in PDGFRA-amplified glioblastomas. Genes Dev. 2010;24:2205.

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Jones AV, Cross NC. Oncogenic derivatives of platelet-derived growth factor receptors. Cell Mol Life Sci. 2004;61:2912.

    PubMed  CAS  Google Scholar 

  78. Fujino S, Miyoshi N, Ohue M, et al. Platelet-derived growth factor receptor-β gene expression relates to recurrence in colorectal cancer. Oncol Rep. 2018;39:2178–84.

    PubMed  CAS  Google Scholar 

  79. Armistead PM, Salganick J, Roh JS, et al. Expression of receptor tyrosine kinases and apoptotic molecules in rhabdomyosarcoma: correlation with overall survival in 105 patients. Cancer. 2007;110(10):2293–303.

    PubMed  CAS  Google Scholar 

  80. Blandford MC, Barr FG, Lynch JC, et al. Rhabdomyosarcomas utilize devel- opmental, myogenic growth factors for disease advantage: a report from the children’s oncology group. Pediatr Blood Cancer. 2006;46(3):329–38.

    PubMed  Google Scholar 

  81. Taniguchi E, Nishijo K, McCleish AT, et al. PDGFR- a is a therapeutic target in alveolar rhabdomyosarcoma. Oncogene. 2008;27(51):6550–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Chugh R, Wathen JK, Maki RG, et al. Phase II multicenter trial of imatinib in 10 histologic subtypes of sarcoma using a bayesian hierarchical statistical model. J Clin Oncol. 2009;27(19):3148–53.

    PubMed  CAS  Google Scholar 

  83. Griseri P, Garrone O, Sardo AL, et al. Genetic and epigenetic factors affect RET gene expression in breast cancer cell lines and influence survival in patients. Oncotarget. 2016;7:26465–79.

    PubMed  PubMed Central  Google Scholar 

  84. Zeng Q, Cheng Y, Zhu Q, et al. The Relationship between over-expression of glial cell-derived neurotrophic factor and its RET receptor with progression and prognosis of human pancreatic cancer. J Int Med Res. 2008;36:656–64.

    PubMed  CAS  Google Scholar 

  85. Ban K, Feng S, Shao L, et al. RET signaling in prostate cancer. Clin Cancer Res. 2017;23:4885–96.

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010. https://doi.org/10.3109/10715761003667554.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Paik PK, Veillon R, Cortot AB, et al. Phase II study of tepotinib in NSCLC patients with METex14 mutations. J Clin Oncol. 2019;37(15_suppl):9005.

    Google Scholar 

  88. Paik PK, Felip E, Veillon R, et al. Tepotinib in non-small-cell lung cancer with MET exon 14 skipping mutations. N Engl J Med. 2020;383:931–43.

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Wang Q, Yang S, Wang K, et al. MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer. J Hematol Oncol. 2019;12(1):63.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financially supported by research grant from University Grants Commission No. F.15-1/2017/PDFWM-2017-18-MAD-46619(SA-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Sen.

Ethics declarations

Conflict of interest

None declared.

Ethical approval

This study was conducted after approval from the Institute Ethics Committee, AIIMS, New Delhi Ref No IEC-45/02.02.2018,RP-02/2018.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13577_2023_993_MOESM1_ESM.tif

Supplementary file 1: Supplementary Figure1. Kaplan–Meier survival curves to show overall survival in rhabdomyosarcoma cases based on the RTKs gene expression. (TIF 112523 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S., Sen, S., Irshad, K. et al. Receptor tyrosine kinase gene expression profiling of orbital rhabdomyosarcoma unveils MET as a potential biomarker and therapeutic target. Human Cell 37, 297–309 (2024). https://doi.org/10.1007/s13577-023-00993-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00993-5

Keywords

Navigation