Skip to main content
Log in

The effect of SARS-CoV-2 on the development of Parkinson's disease: the role of α-synuclein

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

The current coronavirus disease 2019 (COVID-19) can lead to various neurological complications in infected people. These neurological effects include problems in both central nervous system (CNS) and peripheral nervous system (PNS). Hyposmia, a PNS symptom of COVID-19, frequently manifests in the early stages of Parkinson's disease (PD) and serves as an early warning sign of the condition. In addition, the olfactory system is recognized as an early site for the onset of α-synuclein pathology, the pathological hallmark of PD. PD is characterized by accumulation and aggregation of misfolded α-synuclein (α-Syn) into Lewy bodies and Lewy neurites, resulting in the degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Previous research has also shown the involvement of α-Syn in the innate immune response following viral infections. Consequently, the potential link between viral infections and development of PD has gained attention in recent years. However, it's still too early to definitively conclude whether COVID-19 can cause Parkinsonism. Nevertheless, we can explore the likelihood of this connection by examining past studies and possible mechanisms to better understand how COVID-19 might potentially lead to PD following the infection. Based on the various pieces of evidence discussed in this review, we can infer that SARS-CoV-2 promotes the aggregation of α-Syn and, ultimately, leads to PD through at least two mechanisms: the stable binding of the S1 protein to proteins prone to aggregation like α-Syn, and the upregulation of α-Syn as part of the immune response to the infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Fattahi S, Khalifehzadeh-Esfahani Z, Mohammad-Rezaei M, Mafi S, Jafarinia M. PI3K/Akt/mTOR pathway: a potential target for anti-SARS-CoV-2 therapy. Immunol Res. 2022;70(3):269–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Garg K, Talwar D, Mahajan SN, Karim S, Prajapati K, Patel S, et al. A review on COVID-19 vaccinations. Biomed Biotechnol Res J (BBRJ). 2022;6(1):50–3.

    Article  Google Scholar 

  3. Patil S, Gondhali G. COVID-19 pneumonia with pulmonary tuberculosis: double trouble. Int J Mycobacteriol. 2021;10(2):206–9.

    CAS  PubMed  Google Scholar 

  4. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–3. https://doi.org/10.1126/science.abb2507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3. https://doi.org/10.1038/s41586-020-2012-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jamali E, Shapoori S, Farrokhi MR, Vakili S, Rostamzadeh D, Iravanpour F et al. Effect of Disease-Modifying Therapies on COVID-19 Vaccination Efficacy in Multiple Sclerosis Patients: A Comprehensive Review. Viral Immunol. 2023.

  7. Verma T, Sinha M, Nitin B, Yadav S, Shah K, Chauhan N. A review on Coronavirus Disease and potentially active drugs targeting Coronavirus. Biomed Biotechnol Res J. 2021;5(2):110-.

  8. Faheem M, Singh VK, Srivastava A. Recent insights of SARS-CoV-2 potential inhibitors. Biomed Biotechnol Res J (BBRJ). 2022;6(1):21–32.

    Article  Google Scholar 

  9. Doobay MF, Talman LS, Obr TD, Tian X, Davisson RL, Lazartigues E. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R373–81. https://doi.org/10.1152/ajpregu.00292.2006.

    Article  CAS  PubMed  Google Scholar 

  10. Quazi S. Vaccine in response to COVID-19: Recent developments, challenges, and a way out. Biomed Biotechnol Res J. 2021;5(2):105.

    Article  Google Scholar 

  11. Farrokhi MR, Iravanpour F, Nejabat N. Development of acute transverse myelitis following COVID-19 infection: a review on the potential pathways. Eur Neurol. 2023;86(3):209–16. https://doi.org/10.1159/000529927.

    Article  PubMed  Google Scholar 

  12. Rahmati M, Yon DK, Lee SW, Soysal P, Koyanagi A, Jacob L et al. New-onset neurodegenerative diseases as long-term sequelae of SARS-CoV-2 infection: A systematic review and meta-analysis. J Med Virol. 2023;95(7):e28909. https://doi.org/10.1002/jmv.28909.

  13. Rahmati M, Udeh R, Yon DK, Lee SW, Dolja-Gore X, Mc EM et al. A systematic review and meta-analysis of long-term sequelae of COVID-19 2-year after SARS-CoV-2 infection: a call to action for neurological, physical, and psychological sciences. J Med Virol. 2023;95(6):e28852. https://doi.org/10.1002/jmv.28852.

  14. Leta V, Rodríguez-Violante M, Abundes A, Rukavina K, Teo JT, Falup-Pecurariu C, et al. Parkinson’s Disease and Post-COVID-19 Syndrome: The Parkinson’s Long-COVID Spectrum. Mov Disord. 2021;36(6):1287–9. https://doi.org/10.1002/mds.28622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Azhideh A. COVID-19 neurological manifestations. Int Clin Neurosci J. 2020;7(2):54.

    Google Scholar 

  16. Farrokhi MR, Iravanpour F, Nejabat N. Development of acute transverse myelitis following COVID-19 infection: a review on the potential pathways. Eur Neurol. 2023:1–8.

  17. Rey NL, Wesson DW, Brundin P. The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases. Neurobiol Dis. 2018;109(Pt B):226–48. https://doi.org/10.1016/j.nbd.2016.12.013.

    Article  CAS  PubMed  Google Scholar 

  18. Benítez-Burraco A, Herrera E, Cuetos F. A core deficit in Parkinson disease? Neurologia. 2016;31(4):223–30. https://doi.org/10.1016/j.nrl.2015.05.006.

    Article  PubMed  Google Scholar 

  19. Shameli A, Xiao W, Zheng Y, Shyu S, Sumodi J, Meyerson HJ, et al. A critical role for alpha-synuclein in development and function of T lymphocytes. Immunobiology. 2016;221(2):333–40. https://doi.org/10.1016/j.imbio.2015.10.002.

    Article  CAS  PubMed  Google Scholar 

  20. Tulisiak CT, Mercado G, Peelaerts W, Brundin L, Brundin P. Can infections trigger alpha-synucleinopathies? Prog Mol Biol Transl Sci. 2019;168:299–322. https://doi.org/10.1016/bs.pmbts.2019.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Merello M, Bhatia KP, Obeso JA. SARS-CoV-2 and the risk of Parkinson’s disease: facts and fantasy. Lancet Neurol. 2021;20(2):94–5. https://doi.org/10.1016/s1474-4422(20)30442-7.

    Article  CAS  PubMed  Google Scholar 

  22. Cohen ME, Eichel R, Steiner-Birmanns B, Janah A, Ioshpa M, Bar-Shalom R, et al. A case of probable Parkinson’s disease after SARS-CoV-2 infection. Lancet Neurol. 2020;19(10):804–5. https://doi.org/10.1016/s1474-4422(20)30305-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Méndez-Guerrero A, Laespada-García MI, Gómez-Grande A, Ruiz-Ortiz M, Blanco-Palmero VA, Azcarate-Diaz FJ, et al. Acute hypokinetic-rigid syndrome following SARS-CoV-2 infection. Neurology. 2020;95(15):e2109–18. https://doi.org/10.1212/wnl.0000000000010282.

    Article  PubMed  Google Scholar 

  24. Faber I, Brandão PRP, Menegatti F, de Carvalho Bispo DD, Maluf FB, Cardoso F. Coronavirus disease 2019 and Parkinsonism: a non-post-encephalitic case. Mov Disord. 2020;35(10):1721–2. https://doi.org/10.1002/mds.28277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Beach SR, Praschan NC, Hogan C, Dotson S, Merideth F, Kontos N, et al. Delirium in COVID-19: A case series and exploration of potential mechanisms for central nervous system involvement. Gen Hosp Psychiatry. 2020;65:47–53. https://doi.org/10.1016/j.genhosppsych.2020.05.008.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pilotto A, Odolini S, Masciocchi S, Comelli A, Volonghi I, Gazzina S, et al. Steroid-responsive encephalitis in coronavirus disease 2019. Ann Neurol. 2020;88(2):423–7. https://doi.org/10.1002/ana.25783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Philippens I, Böszörményi KP, Wubben JAM, Fagrouch ZC, van Driel N, Mayenburg AQ et al. Brain Inflammation and Intracellular α-Synuclein Aggregates in Macaques after SARS-CoV-2 Infection. Viruses. 2022;14(4). https://doi.org/10.3390/v14040776.

  28. Yang AC, Kern F, Losada PM, Agam MR, Maat CA, Schmartz GP, et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature. 2021;595(7868):565–71. https://doi.org/10.1038/s41586-021-03710-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Käufer C, Schreiber CS, Hartke AS, Denden I, Stanelle-Bertram S, Beck S et al. Microgliosis and neuronal proteinopathy in brain persist beyond viral clearance in SARS-CoV-2 hamster model. EBioMedicine. 2022;79:103999. https://doi.org/10.1016/j.ebiom.2022.103999.

  30. Wildburger NC, Hartke AS, Schidlitzki A, Richter F. Current Evidence for a Bidirectional Loop Between the Lysosome and Alpha-Synuclein Proteoforms. Front Cell Dev Biol. 2020;8:598446. https://doi.org/10.3389/fcell.2020.598446.

  31. Chakroun T, Evsyukov V, Nykänen NP, Höllerhage M, Schmidt A, Kamp F, et al. Alpha-synuclein fragments trigger distinct aggregation pathways. Cell Death Dis. 2020;11(2):84. https://doi.org/10.1038/s41419-020-2285-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kovacs GG, Lukic MJ, Irwin DJ, Arzberger T, Respondek G, Lee EB, et al. Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathol. 2020;140(2):99–119. https://doi.org/10.1007/s00401-020-02158-2.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Maguire-Zeiss KA. alpha-Synuclein: a therapeutic target for Parkinson’s disease? Pharmacol Res. 2008;58(5–6):271–80. https://doi.org/10.1016/j.phrs.2008.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jang H, Boltz D, Sturm-Ramirez K, Shepherd KR, Jiao Y, Webster R, et al. Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration. Proc Natl Acad Sci USA. 2009;106(33):14063–8. https://doi.org/10.1073/pnas.0900096106.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Blanco-Palmero VA, Azcárate-Díaz FJ, Ruiz-Ortiz M, Laespada-García MI, Rábano-Suárez P, Méndez-Guerrero A, et al. Serum and CSF alpha-synuclein levels do not change in COVID-19 patients with neurological symptoms. J Neurol. 2021;268(9):3116–24. https://doi.org/10.1007/s00415-021-10444-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marreiros R, Müller-Schiffmann A, Trossbach SV, Prikulis I, Hänsch S, Weidtkamp-Peters S, et al. Disruption of cellular proteostasis by H1N1 influenza A virus causes α-synuclein aggregation. Proc Natl Acad Sci USA. 2020;117(12):6741–51. https://doi.org/10.1073/pnas.1906466117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matschke J, Lütgehetmann M, Hagel C, Sperhake JP, Schröder AS, Edler C, et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020;19(11):919–29. https://doi.org/10.1016/s1474-4422(20)30308-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pedrosa C, Goto-Silva L, Temerozo JR, Souza LRQ, Vitória G, Ornelas IM et al. Non-permissive SARS-CoV-2 infection in human neurospheres. bioRxiv. 2021. https://doi.org/10.1101/2020.09.11.293951.

  39. Pavel A, Murray DK, Stoessl AJ. COVID-19 and selective vulnerability to Parkinson’s disease. Lancet Neurol. 2020;19(9):719. https://doi.org/10.1016/S1474-4422(20)30269-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang L, Han Y, Nilsson-Payant BE, Gupta V, Wang P, Duan X, et al. A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids. Cell Stem Cell. 2020;27(1):125-36.e7. https://doi.org/10.1016/j.stem.2020.06.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tavassoly O, Safavi F, Tavassoly I. Seeding brain protein aggregation by SARS-CoV-2 as a possible long-term complication of COVID-19 infection. ACS Chem Neurosci. 2020;11(22):3704–6. https://doi.org/10.1021/acschemneuro.0c00676.

    Article  CAS  PubMed  Google Scholar 

  42. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459–68. https://doi.org/10.1038/s41586-020-2286-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lippi A, Domingues R, Setz C, Outeiro TF, Krisko A. SARS-CoV-2: at the crossroad between aging and neurodegeneration. Movement Dis. 2020;35(5):716–20. https://doi.org/10.1002/mds.28084.

    Article  CAS  PubMed  Google Scholar 

  44. Beatman EL, Massey A, Shives KD, Burrack KS, Chamanian M, Morrison TE, et al. Alpha-synuclein expression restricts RNA viral infections in the brain. J Virol. 2015;90(6):2767–82. https://doi.org/10.1128/jvi.02949-15.

    Article  PubMed  Google Scholar 

  45. Stolzenberg E, Berry D, Yang D, Lee EY, Kroemer A, Kaufman S, et al. A role for neuronal alpha-synuclein in gastrointestinal immunity. J Innate Immun. 2017;9(5):456–63. https://doi.org/10.1159/000477990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bantle CM, Phillips AT, Smeyne RJ, Rocha SM, Olson KE, Tjalkens RB. Infection with mosquito-borne alphavirus induces selective loss of dopaminergic neurons, neuroinflammation and widespread protein aggregation. npj Parkinson's Dis. 2019;5(1):20. https://doi.org/10.1038/s41531-019-0090-8.

  47. Labrie V, Brundin P. Alpha-synuclein to the rescue: immune cell recruitment by alpha-synuclein during gastrointestinal infection. J Innate Immun. 2017;9(5):437–40. https://doi.org/10.1159/000479653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Streit WJ, Mrak RE, Griffin WS. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation. 2004;1(1):14. https://doi.org/10.1186/1742-2094-1-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang W, Dallas S, Zhang D, Guo JP, Pang H, Wilson B, et al. Microglial PHOX and Mac-1 are essential to the enhanced dopaminergic neurodegeneration elicited by A30P and A53T mutant alpha-synuclein. Glia. 2007;55(11):1178–88. https://doi.org/10.1002/glia.20532.

    Article  PubMed  Google Scholar 

  50. Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ. Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging. 2008;29(11):1690–701. https://doi.org/10.1016/j.neurobiolaging.2007.04.006.

    Article  CAS  PubMed  Google Scholar 

  51. Reynolds AD, Stone DK, Mosley RL, Gendelman HE. Nitrated {alpha}-synuclein-induced alterations in microglial immunity are regulated by CD4+ T cell subsets. J Immunol. 2009;182(7):4137–49. https://doi.org/10.4049/jimmunol.0803982.

    Article  CAS  PubMed  Google Scholar 

  52. Lee SB, Park SM, Ahn KJ, Chung KC, Paik SR, Kim J. Identification of the amino acid sequence motif of alpha-synuclein responsible for macrophage activation. Biochem Biophys Res Commun. 2009;381(1):39–43. https://doi.org/10.1016/j.bbrc.2009.02.002.

    Article  CAS  PubMed  Google Scholar 

  53. Wilms H, Rosenstiel P, Romero-Ramos M, Arlt A, Schäfer H, Seegert D, et al. Suppression of MAP kinases inhibits microglial activation and attenuates neuronal cell death induced by alpha-synuclein protofibrils. Int J Immunopathol Pharmacol. 2009;22(4):897–909. https://doi.org/10.1177/039463200902200405.

    Article  CAS  PubMed  Google Scholar 

  54. Austin SA, Rojanathammanee L, Golovko MY, Murphy EJ, Combs CK. Lack of alpha-synuclein modulates microglial phenotype in vitro. Neurochem Res. 2011;36(6):994–1004. https://doi.org/10.1007/s11064-011-0439-9.

    Article  CAS  PubMed  Google Scholar 

  55. Austin SA, Floden AM, Murphy EJ, Combs CK. Alpha-synuclein expression modulates microglial activation phenotype. J Neurosci. 2006;26(41):10558–63. https://doi.org/10.1523/jneurosci.1799-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xiao W, Shameli A, Harding CV, Meyerson HJ, Maitta RW. Late stages of hematopoiesis and B cell lymphopoiesis are regulated by α-synuclein, a key player in Parkinson’s disease. Immunobiology. 2014;219(11):836–44. https://doi.org/10.1016/j.imbio.2014.07.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lesteberg KE, Beckham JD. Immunology of west nile virus infection and the role of alpha-synuclein as a viral restriction factor. Viral Immunol. 2019;32(1):38–47. https://doi.org/10.1089/vim.2018.0075.

    Article  CAS  PubMed  Google Scholar 

  58. Ait Wahmane S, Achbani A, Ouhaz Z, Elatiqi M, Belmouden A, Nejmeddine M. The possible protective role of α-synuclein against severe acute respiratory syndrome coronavirus 2 infections in patients with parkinson’s disease. Movement Dis. 2020;35(8):1293–4. https://doi.org/10.1002/mds.28185.

    Article  CAS  PubMed  Google Scholar 

  59. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264–75. https://doi.org/10.1128/jvi.00737-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brundin P, Nath A, Beckham JD. Is COVID-19 a perfect storm for Parkinson’s disease? Trends Neurosci. 2020;43(12):931–3. https://doi.org/10.1016/j.tins.2020.10.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Iravanpour F, Dargahi L, Rezaei M, Haghani M, Heidari R, Valian N, et al. Intranasal insulin improves mitochondrial function and attenuates motor deficits in a rat 6-OHDA model of Parkinson’s disease. CNS Neurosci Ther. 2021;27(3):308–19. https://doi.org/10.1111/cns.13609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Obashi K, Okabe S. Regulation of mitochondrial dynamics and distribution by synapse position and neuronal activity in the axon. Eur J Neurosci. 2013;38(3):2350–63. https://doi.org/10.1111/ejn.12263.

    Article  PubMed  Google Scholar 

  63. Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki S, Masuda K, et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol. 2009;11:958–66. https://doi.org/10.1038/ncb1907.

    Article  CAS  PubMed  Google Scholar 

  64. Gao F, Reynolds MB, Passalacqua KD, Sexton JZ, Abuaita BH, O’Riordan MXD. The Mitochondrial Fission Regulator DRP1 Controls Post-Transcriptional Regulation of TNF-α. Front Cell Infect Microbiol. 2021;10. https://doi.org/10.3389/fcimb.2020.593805.

  65. Shi CS, Qi HY, Boularan C, Huang NN, Abu-Asab M, Shelhamer JH et al. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. Journal of immunology (Baltimore, Md : 1950). 2014;193(6):3080–9. https://doi.org/10.4049/jimmunol.1303196.

  66. Holder K, Reddy PH. The COVID-19 effect on the immune system and mitochondrial dynamics in diabetes, obesity, and dementia. Neuroscientist. 2021;27(4):331–9. https://doi.org/10.1177/1073858420960443.

    Article  CAS  PubMed  Google Scholar 

  67. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et al. Immunology of COVID-19: current state of the science. Immunity. 2020;52(6):910–41. https://doi.org/10.1016/j.immuni.2020.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19: Immunology and treatment options. Clin Immunol. 2020;215:108448. https://doi.org/10.1016/j.clim.2020.108448.

  69. Dutta A, Das A, Kondziella D, Stachowiak MK. Bioenergy Crisis in Coronavirus Diseases? Brain Sci. 2020;10(5). https://doi.org/10.3390/brainsci10050277.

  70. Nakata Y, Yasuda T, Fukaya M, Yamamori S, Itakura M, Nihira T, et al. Accumulation of α-synuclein triggered by presynaptic dysfunction. J Neurosci. 2012;32(48):17186–96. https://doi.org/10.1523/jneurosci.2220-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rahmati M, Fatemi R, Yon DK, Lee SW, Koyanagi A, Il Shin J et al. The effect of adherence to high-quality dietary pattern on COVID-19 outcomes: A systematic review and meta-analysis. J Med Virol. 2023;95(1):e28298. https://doi.org/10.1002/jmv.28298.

  72. Rahmati M, Shamsi MM, Khoramipour K, Malakoutinia F, Woo W, Park S et al. Baseline physical activity is associated with reduced mortality and disease outcomes in COVID-19: A systematic review and meta-analysis. Rev Med Virol. 2022;32(5):e2349. https://doi.org/10.1002/rmv.2349.

  73. Rahmati M, Molanouri Shamsi M, Woo W, Koyanagi A, Won Lee S, Keon Yon D, et al. Effects of physical rehabilitation interventions in COVID-19 patients following discharge from hospital: A systematic review. J Integr Med. 2023;21(2):149–58. https://doi.org/10.1016/j.joim.2023.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

FI conceived the idea and wrote the first draft of the paper. MRF revised subsequent drafts. RTO and MJ supervised, contributed to the conception, critical review, and revision of the paper. All authors approved the final draft for submission.

Corresponding authors

Correspondence to Morteza Jafarinia or Razieh Tavakoli Oliaee.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethics approval

Not applicable.

Informed consent

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iravanpour, F., Farrokhi, M.R., Jafarinia, M. et al. The effect of SARS-CoV-2 on the development of Parkinson's disease: the role of α-synuclein. Human Cell 37, 1–8 (2024). https://doi.org/10.1007/s13577-023-00988-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00988-2

Keywords

Navigation