Skip to main content
Log in

Therapeutic potential of miRNAs in placental extracellular vesicles in ovarian and endometrial cancer

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

There is a cross-link between the placenta and cancer development, as the placenta is grown as a highly invasive tumour-like organ. However, placental development is strictly controlled. Although the underlying mechanism of this control is largely unknown, it is now well-recognised that extracellular vesicles (EVs) released from the placenta play an important role in controlling placenta proliferation and invasion, as placental EVs have shown their effect on regulating maternal adaptation. Better understanding the tumour-like mechanism of the placenta could help to develop a therapeutic potential in cancers. In this study, by RNA sequencing of placental EVs, 20 highly expressed microRNAs (miRNAs) in placental EVs were selected and analysed for their functions on ovarian and endometrial cancer. There were up to seven enriched miRNAs, including miRNA-199a-3p, miRNA-143-3p, and miRNA-519a-5p in placental EVs showing effects on the inhibition of ovarian and endometrial cancer cell proliferation and migration, and promotion of cancer cell death, reported in the literature. Most of these miRNAs have been reported to be downregulated in ovarian and endometrial cancer. Transfection of ovarian and endometrial cancer cells with mimics of miRNA-199a-3p, miRNA-143-3p, and miRNA-519a-5p significantly reduced the cell viability. Our findings could provide strategies for using these naturally occurring miRNAs to develop a novel method to treat ovarian and endometrial cancer in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Martin C, Bergamelli M, Malnou CE, D’Angelo G. Placental extracellular vesicles in maternal-fetal communication during pregnancy. Biochem Soc Trans. 2022;50(6):1785–95.

    PubMed  CAS  Google Scholar 

  2. Sarker S, Scholz-Romero K, Perez A, Illanes SE, Mitchell MD, Rice GE, Salomon C. Placenta-derived exosomes continuously increase in maternal circulation over the first trimester of pregnancy. J Transl Med. 2014;12(1):204.

    PubMed  PubMed Central  Google Scholar 

  3. Morales-Prieto DM, Favaro RR, Markert UR. Placental miRNAs in feto-maternal communication mediated by extracellular vesicles. Placenta. 2020;102:27–33.

    PubMed  CAS  Google Scholar 

  4. Kshirsagar SK, Alam SM, Jasti S, Hodes H, Nauser T, Gilliam M, Billstrand C, Hunt JS, Petroff MG. Immunomodulatory molecules are released from the first trimester and term placenta via exosomes. Placenta. 2012;33(12):982–90.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Abumaree MH, Chamley LW, Badri M, El-Muzaini MF. Trophoblast debris modulates the expression of immune proteins in macrophages: a key to maternal tolerance of the fetal allograft? J Reprod Immunol. 2012;94(2):131–41.

    PubMed  CAS  Google Scholar 

  6. Messerli M, May K, Hansson SR, Schneider H, Holzgreve W, Hahn S, Rusterholz C. Feto-maternal interactions in pregnancies: placental microparticles activate peripheral blood monocytes. Placenta. 2010;31(2):106–12.

    PubMed  CAS  Google Scholar 

  7. Abumaree M, Stone P, Chamley L. The effects of apoptotic, deported human placental trophoblast on macrophages: possible consequences for pregnancy. J Reprod Immunol. 2006;72(1–2):33–45.

    PubMed  CAS  Google Scholar 

  8. Chen Q, Guo F, Jin HY, Lau S, Stone P, Chamley L. Phagocytosis of apoptotic trophoblastic debris protects endothelial cells against activation. Placenta. 2012;33(7):548–53.

    PubMed  Google Scholar 

  9. Tong MSJ, Chen Q, Wise M, Stone P, James J, Chamley L. In vivo targets of human placental extracellular vesicles. Reprod Sci. 2016;23(supplement 1):153A.

    Google Scholar 

  10. Schuster J, Cheng S-B, Padbury J, Sharma S. Placental extracellular vesicles and pre-eclampsia. Am J Reprod Immunol. 2021;85(2): e13297.

    PubMed  CAS  Google Scholar 

  11. Sadovsky Y, Ouyang Y, Powell JS, Li H, Mouillet JF, Morelli AE, Sorkin A, Margolis L. Placental small extracellular vesicles: current questions and investigative opportunities. Placenta. 2020;102:34–8.

    PubMed  PubMed Central  Google Scholar 

  12. Condrat CE, Varlas VN, Duică F, Antoniadis P, Danila CA, Cretoiu D, Suciu N, Crețoiu SM, Voinea SC. Pregnancy-Related Extracellular Vesicles Revisited. Int J Mol Sci. 2021;22:8–3904.

    Google Scholar 

  13. Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics. 2010;73(10):1907–20.

    PubMed  CAS  Google Scholar 

  14. Delorme-Axford E, Donker RB, Mouillet J-F, Chu T, Bayer A, Ouyang Y, Wang T, Stolz DB, Sarkar SN, Morelli AE, Sadovsky Y, Coyne CB. Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci. 2013;110(29):12048.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Vader P, Breakefield XO, Wood MJ. Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med. 2014;20(7):385–93.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Corrado C, Raimondo S, Chiesi A, Ciccia F, De Leo G, Alessandro R. Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci. 2013;14(3):5338–66.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Pham TT, Chen H, Nguyen PHD, Jayasinghe MK, Le AH, Le MTN. Endosomal escape of nucleic acids from extracellular vesicles mediates functional therapeutic delivery. Pharmacol Res. 2023;188: 106665.

    PubMed  CAS  Google Scholar 

  18. Chen Q, Rutten V, Cheng WT, Tong M, Wei J, Stone P, Ching LM, Chamley LW. Phagocytosis of extracellular vesicles extruded from the placenta by ovarian cancer cells inhibits growth of the cancer cells. Int J Gynecol Cancer. 2018;28(3):545–52.

    PubMed  Google Scholar 

  19. Pillay P, Moodley K, Vatish M, Moodley J. Exosomal MicroRNAs in pregnancy provides insight into a possible cure for cancer. Int J Mol Sci. 2020;21(15):5384.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA: A Cancer Journal for Clinicians. 2014;64(1):9–29.

    PubMed  Google Scholar 

  21. Kujawa KA, Lisowska KM. Ovarian cancer–from biology to clinic. Postepy Hig Med Dosw(Online). 2015;69:1275–90.

    PubMed  Google Scholar 

  22. Chen Q, Stone PR, McCowan LM, Chamley LW. Phagocytosis of necrotic but not apoptotic trophoblasts induces endothelial cell activation. Hypertension (Dallas, Tex : 1979). 2006;47(1):116–21.

    PubMed  CAS  Google Scholar 

  23. Abumaree M, Stone P, Chamley L. An in vitro model of human placental trophoblast deportation/shedding. Mol Hum Reprod. 2006;12(11):687–92.

    PubMed  CAS  Google Scholar 

  24. Tong M, Kleffmann T, Pradhan S, Johansson CL, DeSousa J, Stone PR, James JL, Chen Q, Chamley LW. Proteomic characterization of macro-, micro- and nano-extracellular vesicles derived from the same first trimester placenta: relevance for feto-maternal communication. Human reproduction (Oxford, England). 2016;31(4):687–99.

    PubMed  CAS  Google Scholar 

  25. Zhang Y, Tang Y, Sun X, Kang M, Zhao M, Wan J, Chen Q. Exporting proteins associated with senescence repair via extracellular vesicles may be associated with early pregnancy loss. Cells. 2022;11(18):2772.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Bartel DP. Metazoan MicroRNAs. Cell. 2018;173(1):20–51.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Aluvihare VR, Kallikourdis M, Betz AG. Tolerance, suppression and the fetal allograft. J Mol Med (Berl). 2005;83(2):88–96.

    PubMed  Google Scholar 

  28. Wei L, He Y, Bi S, Li X, Zhang J, Zhang S. miRNA-199b-3p suppresses growth and progression of ovarian cancer via the CHK1/E-cadherin/EMT signaling pathway by targeting ZEB1. Oncol Rep. 2021;45(2):569–81.

    PubMed  CAS  Google Scholar 

  29. Tian F, Jia L, Chu Z, Han H, Zhang Y, Cai J. MicroRNA-519a inhibits the proliferation and promotes the apoptosis of ovarian cancer cells through targeting signal transducer and activator of transcription 3. Exp Ther Med. 2018;15(2):1819–24.

    PubMed  CAS  Google Scholar 

  30. He Y, Yu X, Tang Y, Guo Y, Yuan J, Bai J, Yao T, Wu X. MicroRNA-199a-3p inhibits ovarian cancer cell viability by targeting the oncogene YAP1. Molecular medicine reports. 2021;23(4):1.

    Google Scholar 

  31. Wang W, Dong J, Wang M, Yao S, Tian X, Cui X, Fu S, Zhang S. miR-148a-3p suppresses epithelial ovarian cancer progression primarily by targeting c-Met. Oncol Lett. 2018;15(5):6131–6.

    PubMed  PubMed Central  Google Scholar 

  32. Yang H, Zhang X, Zhu L, Yang Y, Yin X. YY1-Induced lncRNA PART1 enhanced resistance of ovarian cancer cells to cisplatin by regulating miR-512-3p/CHRAC1 axis. DNA Cell Biol. 2021;40(6):821–32.

    PubMed  CAS  Google Scholar 

  33. Xu C, Zhai J, Fu Y. LncRNA CDKN2B-AS1 promotes the progression of ovarian cancer by miR-143-3p/SMAD3 axis and predicts a poor prognosis. Neoplasma. 2020;67(4):782–93.

    PubMed  CAS  Google Scholar 

  34. Shi H, Shen H, Xu J, Zhao S, Yao S, Jiang N. MiR-143-3p suppresses the progression of ovarian cancer. American journal of translational research. 2018;10(3):866–74.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Zhang H, Li W. Dysregulation of micro-143-3p and BALBP1 contributes to the pathogenesis of the development of ovarian carcinoma. Oncol Rep. 2016;36(6):3605–10.

    PubMed  CAS  Google Scholar 

  36. Wu D, Huang HJ, He CN, Wang KY. MicroRNA-199a-3p regulates endometrial cancer cell proliferation by targeting mammalian target of rapamycin (mTOR). International journal of gynecological cancer : official journal of the International Gynecological Cancer Society. 2013;23(7):1191–7.

    PubMed  Google Scholar 

  37. Liu Y, Cai Y, Chang Y. Dual inhibition of RNAi therapeutic miR-26a-5p targeting cMet and immunotherapy against EGFR in endometrial cancer treatment. Annals of translational medicine. 2021;9(1):5.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Zuo Y, Qu C, Tian Y, Wen Y, Xia S, Ma M. The HIF-1/SNHG1/miR-199a-3p/TFAM axis explains tumor angiogenesis and metastasis under hypoxic conditions in breast cancer. BioFactors. 2021;47(3):444–60.

    PubMed  CAS  Google Scholar 

  39. Li GH, Yu JH, Yang B, Gong FC, Zhang KW. LncRNA LOXL1-AS1 inhibited cell proliferation, migration and invasion as well as induced apoptosis in breast cancer via regulating miR-143-3p. Eur Rev Med Pharmacol Sci. 2019;23(23):10400–9.

    PubMed  Google Scholar 

  40. Li X, Zou W, Wang Y, Liao Z, Li L, Zhai Y, Zhang L, Gu S, Zhao X. Plasma-based microRNA signatures in early diagnosis of breast cancer. Mol Genet Genomic Med. 2020;8(5): e1092.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Ghosh A, Dasgupta D, Ghosh A, Roychoudhury S, Kumar D, Gorain M, Butti R, Datta S, Agarwal S, Gupta S, Krishna G, Dhali, Chowdhury A, Schmittgen TD, Kundu GC, Banerjee S. MiRNA199a-3p suppresses tumor growth, migration, invasion and angiogenesis in hepatocellular carcinoma by targeting VEGFA, VEGFR1, VEGFR2, HGF and MMP2. Cell Death Dis. 2017;8(3):2706.

    Google Scholar 

  42. Peng J, Wu HJ, Zhang HF, Fang SQ, Zeng R. miR-143-3p inhibits proliferation and invasion of hepatocellular carcinoma cells by regulating its target gene FGF1. Clin Transl Oncol. 2021;23(3):468–80.

    PubMed  CAS  Google Scholar 

  43. Xu G, Zhu Y, Liu H, Liu Y, Zhang X. Long non-coding RNA KCNQ1OT1 promotes progression of hepatocellular carcinoma by miR-148a-3p/IGF1R axis. Technol Cancer Res Treat. 2020;19:1533033820980117.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Bai J, Jiao WY. Down-regulation of ZEB1 by miR-199a-3p overexpression restrains tumor stem-like properties and mitochondrial function of non-small cell lung cancer. Onco Targets Ther. 2020;13:4607–16.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Sanada H, Seki N, Mizuno K, Misono S, Uchida A, Yamada Y, Moriya S, Kikkawa N, Machida K, Kumamoto T, Suetsugu T, Inoue H. Involvement of dual strands of miR-143 (miR-143–5p and miR-143–3p) and their target oncogenes in the molecular pathogenesis of lung adenocarcinoma. Int J Mol Sci. 2019;20(18):4482.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Xie Q, Yu Z, Lu Y, Fan J, Ni Y, Ma L. microRNA-148a-3p inhibited the proliferation and epithelial-mesenchymal transition progression of non-small-cell lung cancer via modulating Ras/MAPK/Erk signaling. J Cell Physiol. 2019;234(8):12786–99.

    PubMed  CAS  Google Scholar 

  47. Wang B, Xu Y, Wei Y, Lv L, Liu N, Lin R, Wang X, Shi B. Human mesenchymal stem cell-derived exosomal microRNA-143 promotes apoptosis and suppresses cell growth in pancreatic cancer via target gene regulation. Front Genet. 2021;12: 581694.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Fu X, Hong L, Yang Z, Tu Y, Xin W, Zha M, Tu S, Sun G, Li Y, Xiao W. MicroRNA-148a-3p suppresses epithelial-to-mesenchymal transition and stemness properties via Wnt1-mediated Wnt/β-catenin pathway in pancreatic cancer. J Cell Mol Med. 2020;24(22):13020–35.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Wang F, Liu J, Zou Y, Jiao Y, Huang Y, Fan L, Li X, Yu H, He C, Wei W, Wang H. MicroRNA-143-3p, up-regulated in H. pylori-positive gastric cancer, suppresses tumor growth, migration and invasion by directly targeting AKT2. Oncotarget. 2017;8(17):28711–24.

    PubMed  PubMed Central  Google Scholar 

  50. Bao C, Guo L. MicroRNA-148a-3p inhibits cancer progression and is a novel screening biomarker for gastric cancer. J Clin Lab Anal. 2020;34(10): e23454.

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Lu J, Chen H, He F, You Y, Feng Z, Chen W, Li X, Zhao L. Ginsenoside 20(S)-Rg3 upregulates HIF-1α-targeting miR-519a-5p to inhibit the Warburg effect in ovarian cancer cells. Clin Exp Pharmacol Physiol. 2020;47(8):1455–63.

    PubMed  CAS  Google Scholar 

  52. Deng Y, Zhao F, Hui L, Li X, Zhang D, Lin W, Chen Z, Ning Y. Suppressing miR-199a-3p by promoter methylation contributes to tumor aggressiveness and cisplatin resistance of ovarian cancer through promoting DDR1 expression. Journal of ovarian research. 2017;10(1):50.

    PubMed  PubMed Central  Google Scholar 

  53. Cui Y, Wu F, Tian D, Wang T, Lu T, Huang X, Zhang P, Qin L. miR-199a-3p enhances cisplatin sensitivity of ovarian cancer cells by targeting ITGB8. Oncol Rep. 2018;39(4):1649–57.

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Kinose Y, Sawada K, Nakamura K, Sawada I, Toda A, Nakatsuka E, Hashimoto K, Mabuchi S, Takahashi K, Kurachi H, Lengyel E, Kimura T. The hypoxia-related microRNA miR-199a-3p displays tumor suppressor functions in ovarian carcinoma. Oncotarget. 2015;6(13):11342–56.

    PubMed  PubMed Central  Google Scholar 

  55. Kobayashi M, Sawada K, Miyamoto M, Shimizu A, Yamamoto M, Kinose Y, Nakamura K, Kawano M, Kodama M, Hashimoto K, Kimura T. Exploring the potential of engineered exosomes as delivery systems for tumor-suppressor microRNA replacement therapy in ovarian cancer. Biochem Biophys Res Commun. 2020;527(1):153–61.

    PubMed  CAS  Google Scholar 

  56. Xu C, Zhu LX, Sun DM, Yao H, Han DX. Regulatory mechanism of lncRNA NORAD on proliferation and invasion of ovarian cancer cells through miR-199a-3p. Eur Rev Med Pharmacol Sci. 2020;24(4):1672–81.

    PubMed  CAS  Google Scholar 

  57. Pan L, Meng Q, Li H, Liang K, Li B. LINC00339 promotes cell proliferation, migration, and invasion of ovarian cancer cells via miR-148a-3p/ROCK1 axes. Biomedecine and Pharmacotherapie. 2019;120:109423.

    PubMed  CAS  Google Scholar 

  58. Tan C, Liu W, Zheng ZH, Wan XG. LncRNA HOTTIP inhibits cell pyroptosis by targeting miR-148a-3p/AKT2 axis in ovarian cancer. Cell Biol Int. 2021;45(7):1487–97.

    PubMed  CAS  Google Scholar 

  59. Liu T, Cai J, Cai J, Wang Z, Cai L. EZH2-miRNA positive feedback promotes tumor growth in ovarian cancer. Front Oncol. 2020;10: 608393.

    PubMed  Google Scholar 

  60. Guan W, Wang X, Lin Q, Zhang J, Ren W, Xu G. Transforming growth factor-β/miR-143-3p/cystatin B axis is a therapeutic target in human ovarian cancer. Int J Oncol. 2019;55(1):267–76.

    PubMed  CAS  Google Scholar 

  61. Tan X, Shao Y, Teng Y, Liu S, Li W, Xue L, Cao Y, Sun C, Zhang J, Han J, Wu X, Xu H, Xie K. The cancer-testis long non-coding rna pcat6 facilitates the malignant phenotype of ovarian cancer by sponging miR-143-3p. Frontiers in Cell and Developmental Biology. 2021;9: 593677.

    PubMed  PubMed Central  Google Scholar 

  62. Wen J, Han S, Cui M, Wang Y. Long non-coding RNA MCM3AP-AS1 drives ovarian cancer progression via the microRNA-143-3p/TAK1 axis. Oncol Rep. 2020;44(4):1375–84.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Lin Q, Guan W, Ren W, Zhang L, Zhang J, Xu G. MALAT1 affects ovarian cancer cell behavior and patient survival. Oncol Rep. 2018;39(6):2644–52.

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Shi J, Zhang L, Zhou D, Zhang J, Lin Q, Guan W, Zhang J, Ren W, Xu G. Biological function of ribosomal protein l10 on cell behavior in human epithelial ovarian cancer. J Cancer. 2018;9(4):745–56.

    PubMed  PubMed Central  Google Scholar 

  65. Zhang L, Zhou D, Guan W, Ren W, Sun W, Shi J, Lin Q, Zhang J, Qiao T, Ye Y, Wu Y, Zhang Y, Zuo X, Connor KL, Xu G. Pyridoxine 5’-phosphate oxidase is a novel therapeutic target and regulated by the TGF-β signalling pathway in epithelial ovarian cancer. Cell Death Dis. 2017;8(12):3214.

    PubMed  PubMed Central  Google Scholar 

  66. Ohyagi-Hara C, Sawada K, Kamiura S, Tomita Y, Isobe A, Hashimoto K, Kinose Y, Mabuchi S, Hisamatsu T, Takahashi T, Kumasawa K, Nagata S, Morishige K, Lengyel E, Kurachi H, Kimura T. miR-92a inhibits peritoneal dissemination of ovarian cancer cells by inhibiting integrin α5 expression. Am J Pathol. 2013;182(5):1876–89.

    PubMed  CAS  Google Scholar 

  67. Fan X, Zou X, Liu C, Cheng W, Zhang S, Geng X, Zhu W. MicroRNA expression profile in serum reveals novel diagnostic biomarkers for endometrial cancer. Bioscience Reports. 2021;41(6):BSR20210111.

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Liu T, Wang X, Zhai J, Wang Q, Zhang B. Long noncoding rna uca1 facilitates endometrial cancer development by regulating klf5 and rxfp1 gene expressions. Cancer Biotherapy & Radiopharmaceuticals. 2020;36(6):521–33.

    Google Scholar 

  69. Ke J, Shen Z, Hu W, Li M, Shi Y, Xie Z, Wu D. LncRNA DCST1-AS1 was upregulated in endometrial carcinoma and may sponge miR-92a-3p to upregulate notch1. Cancer Management and Research. 2020;12:1221–7.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Outstanding Talent Project of Wuxi Health and Family Planning Commission of China (ZDRC023 to M Zhao) and the Outstanding Talent Project of Wuxi Maternity and Child Health Hospital affiliated with Nanjing Medical University. The authors would like to thank the women who donated the placentae for this study.

Funding

Wuxi Health and Family Planning Commission, Z202104, Min Zhao

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the drafting, editing, and approval of the manuscript for publication. In addition to this, each author contributed to the following work: YZ, YW, XC, XS: data analysis. YT: sampling. MZ, YT, and QC: study design and completion of the final manuscript.

Corresponding author

Correspondence to Min Zhao.

Ethics declarations

Conflict of interest

All authors have no conflict of interest to report.

Data loading information

The raw miRNA sequencing data included in this study have been uploaded to European Nucleotide Archive (accession number: PRJEB44935), visiting http://www.ebi.ac.uk/ena/data/view/PRJEB44935​ can directly link to the raw data. The raw mRNA sequencing data included in this study have been uploaded to the GEO database (accession number: GSE243543) with the link https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE243543.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Tang, Y., Chen, X. et al. Therapeutic potential of miRNAs in placental extracellular vesicles in ovarian and endometrial cancer. Human Cell 37, 285–296 (2024). https://doi.org/10.1007/s13577-023-00986-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00986-4

Keywords

Navigation