Skip to main content

Advertisement

Log in

Copper in Cancer: from transition metal to potential target

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

In recent years, with the continuous in-depth exploration of the molecular mechanisms of tumorigenesis, numerous potential new targets for cancer treatment have been identified, some of which have been further developed in clinical practice and have produced positive outcomes. Notably, researchers' initial motivation for studying copper metabolism in cancer stems from the fact that copper is a necessary trace element for organisms and is closely connected to body growth and metabolism. Moreover, over the past few decades, considerable progress has been made in understanding the molecular processes and correlations between copper and cancer. Certain achievements have been made in the development and use of relevant clinical medications. The concept of "cuproptosis," a novel concept that differs from previous forms of cell death, was first proposed by a group of scientists last year, offering fresh perspectives on the targeting capabilities of copper in the treatment of cancer. In this review, we introduced the fundamental physiological functions of copper, the key components of copper metabolism, and a summary of the current research contributions on the connection between copper and cancer. In addition, the development of new copper-based nanomaterials and their associated mechanisms of action are discussed. Finally, we described how the susceptibility of cancer cells to this metallic nutrition could be leveraged to further improve the existing cancer treatment paradigm in the new setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data in this article is available with the author's consent.

References

  1. Nevitt T, Ohrvik H, Thiele DJ. Charting the travels of copper in eukaryotes from yeast to mammals. Biochim Biophys Acta. 2012;1823:1580–93.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Berg JM. Principles of bioinorganic chemistry: University Science Books, 1994.

  3. Solomon EI, Sundaram UM, Machonkin TE. Multicopper Oxidases and Oxygenases. Chem Rev. 1996;96:2563–606.

    PubMed  CAS  Google Scholar 

  4. Que EL, Domaille DW, Chang CJ. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev. 2008;108:1517–49.

    PubMed  CAS  Google Scholar 

  5. Allen SE, Walvoord RR, Padilla-Salinas R, et al. Aerobic copper-catalyzed organic reactions. Chem Rev. 2013;113:6234–458.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Solomon EI, Heppner DE, Johnston EM, et al. Copper active sites in biology. Chem Rev. 2014;114:3659–853.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Lin ZF, Xu HB, Wang JY, et al. SIRT5 desuccinylates and activates SOD1 to eliminate ROS. Biochem Biophys Res Commun. 2013;441:191–5.

    PubMed  CAS  Google Scholar 

  8. Gaudet P, Livstone MS, Lewis SE, et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief Bioinform. 2011;12:449–62.

    PubMed  PubMed Central  Google Scholar 

  9. Ehrenwald E, Fox PL. Role of endogenous ceruloplasmin in low density lipoprotein oxidation by human U937 monocytic cells. J Clin Invest. 1996;97:884–90.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Mashima R, Okuyama T. The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol. 2015;6:297–310.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Ackerman CM, Lee S, Chang CJ. Analytical methods for imaging metals in biology: from transition metal metabolism to transition metal signaling. Anal Chem. 2017;89:22–41.

    PubMed  CAS  Google Scholar 

  12. Hare DJ, New EJ, de Jonge MD, et al. Imaging metals in biology: balancing sensitivity, selectivity and spatial resolution. Chem Soc Rev. 2015;44:5941–58.

    PubMed  CAS  Google Scholar 

  13. Migocka M. Copper-transporting ATPases: The evolutionarily conserved machineries for balancing copper in living systems. IUBMB Life. 2015;67:737–45.

    PubMed  CAS  Google Scholar 

  14. Georgatsou E, Mavrogiannis LA, Fragiadakis GS, et al. The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. J Biol Chem. 1997;272:13786–92.

    PubMed  CAS  Google Scholar 

  15. Dancis A, Roman DG, Anderson GJ, et al. Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc Natl Acad Sci U S A. 1992;89:3869–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Ramos D, Mar D, Ishida M, et al. Mechanism of copper uptake from blood plasma ceruloplasmin by mammalian cells. Plos One 2016;11.

  17. Moriya M, Ho Y-H, Grana A, et al. Copper is taken up efficiently from albumin and α2-macroglobulin by cultured human cells by more than one mechanism. Am J Physiol Cell Physiol. 2008;295:C708–21.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Liu NM, Lo LSL, Askary SH, et al. Transcuprein is a macroglobulin regulated by copper and iron availability. J Nutr Biochem. 2007;18:597–608.

    PubMed  PubMed Central  Google Scholar 

  19. Richards MP. Recent developments in trace element metabolism and function: role of metallothionein in copper and zinc metabolism. J Nutr. 1989;119:1062–70.

    PubMed  CAS  Google Scholar 

  20. Roelofsen H, Wolters H, Van Luyn MJ, et al. Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion. Gastroenterology. 2000;119:782–93.

    PubMed  CAS  Google Scholar 

  21. Institute of Medicine (US) Panel on Micronutrients.Dietary Reference Intakes for Vitamin A, Vitamin K,Arsenic, Boron, Chromium, Copper, Iodine, Iron,Manganese, Molybdenum, Nickel, Silicon, Vanadium,and Zinc (National Academies Press, 2001).

  22. Gupte A, Mumper RJ. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev. 2009;35:32–46.

    PubMed  CAS  Google Scholar 

  23. Yoshida Y, Furuta S, Niki E. Effects of metal chelating agents on the oxidation of lipids induced by copper and iron. Biochim Biophys Acta. 1993;1210:81–8.

    PubMed  CAS  Google Scholar 

  24. Arredondo M, Nunez MT. Iron and copper metabolism. Mol Aspects Med. 2005;26:313–27.

    PubMed  CAS  Google Scholar 

  25. Shanbhag VC, Gudekar N, Jasmer K, et al. Copper metabolism as a unique vulnerability in cancer. Biochim Biophys Acta Mol Cell Res. 2021;1868: 118893.

    PubMed  CAS  Google Scholar 

  26. Scriver C R. The metabolic & molecular bases of inherited disease[M]. McGraw-Hill, 2001.:

  27. Danks DM, Campbell PE, Stevens BJ, et al. Menkes's kinky hair syndrome. An inherited defect in copper absorption with widespread effects. Pediatrics 1972;50:188–201.

  28. Kodama H, Murata Y, Kobayashi M. Clinical manifestations and treatment of Menkes disease and its variants. Pediatrics Int. 1999;41:423–9.

    CAS  Google Scholar 

  29. Bull PC, Thomas GR, Rommens JM, et al. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet. 1993;5:327–37.

    PubMed  CAS  Google Scholar 

  30. Horn N, Tonnesen T, Tumer Z. Menkes disease: an X-linked neurological disorder of the copper metabolism. Brain pathology (Zurich, Switzerland). 1992;2:351–62.

    PubMed  CAS  Google Scholar 

  31. Kodama H, Murata Y. Molecular genetics and pathophysiology of Menkes disease. Pediatrics Int. 1999;41:430–5.

    CAS  Google Scholar 

  32. Tang JR, Robertson S, Lem KE, et al. Functional copper transport explains neurologic sparing in Occipital Horn syndrome. Genet Med. 2006;8:711–8.

    PubMed  CAS  Google Scholar 

  33. Beijer D, Baets J. The expanding genetic landscape of hereditary motor neuropathies. Brain. 2020;143:3540–63.

    PubMed  Google Scholar 

  34. Ala A, Walker AP, Ashkan K, et al. Wilson’s disease. Lancet. 2007;369:397–408.

    PubMed  CAS  Google Scholar 

  35. Rosencrantz R, Schilsky M. Wilson disease: pathogenesis and clinical considerations in diagnosis and treatment. Semin Liver Dis. 2011;31:245–59.

    PubMed  CAS  Google Scholar 

  36. Strand S, Hofmann WJ, Grambihler A, et al. Hepatic failure and liver cell damage in acute Wilson’s disease involve CD95 (APO-1/Fas) mediated apoptosis. Nat Med. 1998;4:588–93.

    PubMed  CAS  Google Scholar 

  37. Purchase R. The link between copper and Wilson’s disease. Sci Prog. 2013;96:213–23.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Rosenzweig AC, O’Halloran TV. Structure and chemistry of the copper chaperone proteins. Curr Opin Chem Biol. 2000;4:140–7.

    PubMed  CAS  Google Scholar 

  39. Tapken W, Kim J, Nishimura K, et al. The Clp protease system is required for copper ion-dependent turnover of the PAA2/HMA8 copper transporter in chloroplasts. New Phytol. 2015;205:511–7.

    PubMed  CAS  Google Scholar 

  40. Xia F, Fu Y, Xie H, et al. Suppression of ATG4B by copper inhibits autophagy and involves in Mallory body formation. Redox Biol. 2022;52: 102284.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Lee J, Peña MM, Nose Y, et al. Biochemical characterization of the human copper transporter Ctr1. J Biol Chem. 2002;277:4380–7.

    PubMed  CAS  Google Scholar 

  42. Scarl RT, Lawrence CM, Gordon HM, et al. STEAP4: its emerging role in metabolism and homeostasis of cellular iron and copper. J Endocrinol. 2017;234:R123-r134.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Liang ZD, Tsai WB, Lee MY, et al. Specificity protein 1 (sp1) oscillation is involved in copper homeostasis maintenance by regulating human high-affinity copper transporter 1 expression. Mol Pharmacol. 2012;81:455–64.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Petris MJ, Smith K, Lee J, et al. Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1. J Biol Chem. 2003;278:9639–46.

    PubMed  CAS  Google Scholar 

  45. Gourdon P, Sitsel O, Lykkegaard Karlsen J, et al. Structural models of the human copper P-type ATPases ATP7A and ATP7B. Biol Chem. 2012;393:205–16.

    PubMed  CAS  Google Scholar 

  46. Lutsenko S, Barnes NL, Bartee MY, et al. Function and regulation of human copper-transporting ATPases. Physiol Rev. 2007;87:1011–46.

    PubMed  CAS  Google Scholar 

  47. La Fontaine S, Ackland ML, Mercer JF. Mammalian copper-transporting P-type ATPases, ATP7A and ATP7B: emerging roles. Int J Biochem Cell Biol. 2010;42:206–9.

    PubMed  Google Scholar 

  48. Kaler SG. ATP7A-related copper transport diseases-emerging concepts and future trends. Nat Rev Neurol. 2011;7:15–29.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Bartee MY, Lutsenko S. Hepatic copper-transporting ATPase ATP7B: function and inactivation at the molecular and cellular level. Biometals. 2007;20:627–37.

    PubMed  CAS  Google Scholar 

  50. Hellman NE, Gitlin JD. Ceruloplasmin metabolism and function. Annu Rev Nutr. 2002;22:439–58.

    PubMed  CAS  Google Scholar 

  51. Meyer LA, Durley AP, Prohaska JR, et al. Copper transport and metabolism are normal in aceruloplasminemic mice. J Biol Chem. 2001;276:36857–61.

    PubMed  CAS  Google Scholar 

  52. Linder MC. Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics. 2016;8:887–905.

    PubMed  CAS  Google Scholar 

  53. Klaassen CD, Liu J, Choudhuri S. Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol. 1999;39:267–94.

    PubMed  CAS  Google Scholar 

  54. Karin M. Metallothioneins: proteins in search of function. Cell. 1985;41:9–10.

    PubMed  CAS  Google Scholar 

  55. Raimundo N. Mitochondrial pathology: stress signals from the energy factory. Trends Mol Med. 2014;20:282–92.

    PubMed  CAS  Google Scholar 

  56. Cobine PA, Ojeda LD, Rigby KM, et al. Yeast contain a non-proteinaceous pool of copper in the mitochondrial matrix. J Biol Chem. 2004;279:14447–55.

    PubMed  CAS  Google Scholar 

  57. Li Y, D’Aurelio M, Deng JH, et al. An assembled complex IV maintains the stability and activity of complex I in mammalian mitochondria. J Biol Chem. 2007;282:17557–62.

    PubMed  CAS  Google Scholar 

  58. Carr HS, Winge DR. Assembly of cytochrome c oxidase within the mitochondrion. Acc Chem Res. 2003;36:309–16.

    PubMed  CAS  Google Scholar 

  59. Glerum DM, Shtanko A, Tzagoloff A. Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem. 1996;271:14504–9.

    PubMed  CAS  Google Scholar 

  60. Abajian C, Yatsunyk LA, Ramirez BE, et al. Yeast cox17 solution structure and Copper(I) binding. J Biol Chem. 2004;279:53584–92.

    PubMed  CAS  Google Scholar 

  61. Arnesano F, Balatri E, Banci L, et al. Folding studies of Cox17 reveal an important interplay of cysteine oxidation and copper binding. Structure. 2005;13:713–22.

    PubMed  CAS  Google Scholar 

  62. Horn D, Barrientos A. Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life. 2008;60:421–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Granger A, Mott R, Emambokus N. Hacking cancer metabolism. Cell Metab. 2016;24:643–4.

    PubMed  CAS  Google Scholar 

  64. Singh RP, Jeyaraju DV, Voisin V, et al. Disrupting mitochondrial copper distribution inhibits leukemic stem cell self-renewal. Cell Stem Cell. 2020;26:926-937.e10.

    PubMed  CAS  Google Scholar 

  65. Cai L, Xiong X, Kong X, et al. The role of the lysyl oxidases in tissue repair and remodeling: a concise review. Tissue Eng Regen Med. 2017;14:15–30.

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Lin W, Xu L, Li G. Molecular insights into lysyl oxidases in cartilage regeneration and rejuvenation. Front Bioeng Biotechnol. 2020;8:359.

    PubMed  PubMed Central  Google Scholar 

  67. Ye M, Song Y, Pan S, et al. Evolving roles of lysyl oxidase family in tumorigenesis and cancer therapy. Pharmacol Ther. 2020;215: 107633.

    PubMed  CAS  Google Scholar 

  68. Pez F, Dayan F, Durivault J, et al. The HIF-1-inducible lysyl oxidase activates HIF-1 via the Akt pathway in a positive regulation loop and synergizes with HIF-1 in promoting tumor cell growth. Cancer Res. 2011;71:1647–57.

    PubMed  CAS  Google Scholar 

  69. Hatori Y, Lutsenko S. The Role of Copper chaperone Atox1 in coupling redox homeostasis to intracellular copper distribution. Antioxidants (Basel) 2016;5.

  70. Pufahl RA, Singer CP, Peariso KL, et al. Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science. 1997;278:853–6.

    PubMed  CAS  Google Scholar 

  71. Banci L, Bertini I, Chasapis CT, et al. Interaction of the two soluble metal-binding domains of yeast Ccc2 with copper(I)-Atx1. Biochem Biophys Res Commun. 2007;364:645–9.

    PubMed  CAS  Google Scholar 

  72. Wang J, Luo C, Shan C, et al. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nat Chem. 2015;7:968–79.

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Karginova O, Weekley CM, Raoul A, et al. Inhibition of copper transport induces apoptosis in triple-negative breast cancer cells and suppresses tumor angiogenesis. Mol Cancer Ther. 2019;18:873–85.

    PubMed  CAS  Google Scholar 

  74. Matson Dzebo M, Blockhuys S, Valenzuela S, et al. Copper chaperone atox1 interacts with cell cycle proteins. Comput Struct Biotechnol J. 2018;16:443–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Chen L, Li N, Zhang M, et al. APEX2-based proximity labeling of Atox1 Identifies CRIP2 as a nuclear copper-binding protein that regulates autophagy activation. Angew Chem Int Ed Engl. 2021;60:25346–55.

    PubMed  CAS  Google Scholar 

  76. Gillibert-Duplantier J, Duthey B, Sisirak V, et al. Gene expression profiling identifies sST2 as an effector of ErbB2-driven breast carcinoma cell motility, associated with metastasis. Oncogene. 2012;31:3516–24.

    PubMed  CAS  Google Scholar 

  77. Sorokin AV, Chen J. MEMO1, a new IRS1-interacting protein, induces epithelial-mesenchymal transition in mammary epithelial cells. Oncogene. 2013;32:3130–8.

    PubMed  CAS  Google Scholar 

  78. Wei X, Wang B, Wu Z, et al. WD repeat protein 54-mediator of ErbB2-driven cell motility 1 axis promotes bladder cancer tumorigenesis and metastasis and impairs chemosensitivity. Cancer Lett. 2023;556: 216058.

    PubMed  CAS  Google Scholar 

  79. Zhang X, Walke GR, Horvath I, et al. Memo1 binds reduced copper ions, interacts with copper chaperone Atox1, and protects against copper-mediated redox activity in vitro. Proc Natl Acad Sci USA. 2022;119: e2206905119.

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Pavithra V, Sathisha TG, Kasturi K, et al. Serum levels of metal ions in female patients with breast cancer. J Clin Diagn Res. 2015;9:BC25-c27.

  81. Stepien M, Hughes DJ, Hybsier S, et al. Circulating copper and zinc levels and risk of hepatobiliary cancers in Europeans. Br J Cancer. 2017;116:688–96.

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Lener MR, Scott RJ, Wiechowska-Kozłowska A, et al. Serum concentrations of selenium and copper in patients diagnosed with pancreatic cancer. Cancer Res Treat. 2016;48:1056–64.

    PubMed  CAS  Google Scholar 

  83. Blockhuys S, Celauro E, Hildesjö C, et al. Defining the human copper proteome and analysis of its expression variation in cancers. Metallomics. 2017;9:112–23.

    PubMed  CAS  Google Scholar 

  84. Atakul T, Altinkaya SO, Abas BI, et al. Serum copper and zinc levels in patients with endometrial cancer. Biol Trace Elem Res. 2020;195:46–54.

    PubMed  CAS  Google Scholar 

  85. Zhang C, Cheng R, Ding J, et al. Serum copper and zinc levels and colorectal cancer in adults: findings from the national health and nutrition examination 2011–2016. Biol Trace Elem Res. 2022;200:2033–9.

    PubMed  CAS  Google Scholar 

  86. Saleh SAK, Adly HM, Abdelkhaliq AA, et al. Serum levels of selenium, zinc, copper, manganese, and iron in prostate cancer patients. Curr Urol. 2020;14:44–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Shen F, Cai WS, Li JL, et al. The association between serum levels of selenium, copper, and magnesium with thyroid cancer: a meta-analysis. Biol Trace Elem Res. 2015;167:225–35.

    PubMed  CAS  Google Scholar 

  88. Ge EJ, Bush AI, Casini A, et al. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer. 2022;22:102–13.

    PubMed  CAS  Google Scholar 

  89. Xie H, Kang YJ. Role of copper in angiogenesis and its medicinal implications. Curr Med Chem. 2009;16:1304–14.

    PubMed  CAS  Google Scholar 

  90. Turski ML, Thiele DJ. New roles for copper metabolism in cell proliferation, signaling, and disease. J Biol Chem. 2009;284:717–21.

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Ishida S, Andreux P, Poitry-Yamate C, et al. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc Natl Acad Sci USA. 2013;110:19507–12.

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Wooton-Kee CR, Robertson M, Zhou Y, et al. Metabolic dysregulation in the Atp7b(-/-) Wilson’s disease mouse model. Proc Natl Acad Sci USA. 2020;117:2076–83.

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Yang H, Ralle M, Wolfgang MJ, et al. Copper-dependent amino oxidase 3 governs selection of metabolic fuels in adipocytes. PLoS Biol. 2018;16: e2006519.

    PubMed  PubMed Central  Google Scholar 

  94. Sajib S, Zahra FT, Lionakis MS, et al. Mechanisms of angiogenesis in microbe-regulated inflammatory and neoplastic conditions. Angiogenesis. 2018;21:1–14.

    PubMed  CAS  Google Scholar 

  95. McAuslan BR, Reilly W. Endothelial cell phagokinesis in response to specific metal ions. Exp Cell Res. 1980;130:147–57.

    PubMed  CAS  Google Scholar 

  96. Raju KS, Alessandri G, Ziche M, et al. Ceruloplasmin, copper ions, and angiogenesis. J Natl Cancer Inst. 1982;69:1183–8.

    PubMed  CAS  Google Scholar 

  97. Lydia Finney SM. Lyann Ursos, Wen Zhang, X-ray fluorescence microscopy reveals large-scale relocalization and extracellular translocation of cellular copper during angiogenesis. PNAS. 2007;104:2247–52.

    PubMed  PubMed Central  Google Scholar 

  98. Mandinov L, Mandinova A, Kyurkchiev S, et al. Copper chelation represses the vascular response to injury. Proc Natl Acad Sci USA. 2003;100:6700–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Prudovsky I, Bagala C, Tarantini F, et al. The intracellular translocation of the components of the fibroblast growth factor 1 release complex precedes their assembly prior to export. J Cell Biol. 2002;158:201–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Feng W, Ye F, Xue W, et al. Copper regulation of hypoxia-inducible factor-1 activity. Mol Pharmacol. 2009;75:174–82.

    PubMed  CAS  Google Scholar 

  101. Wu Z, Zhang W, Kang YJ. Copper affects the binding of HIF-1α to the critical motifs of its target genes. Metallomics. 2019;11:429–38.

    PubMed  Google Scholar 

  102. Liu X, Zhang W, Wu Z, et al. Copper levels affect targeting of hypoxia-inducible factor 1α to the promoters of hypoxia-regulated genes. J Biol Chem. 2018;293:14669–77.

    PubMed  CAS  Google Scholar 

  103. Das A, Ash D, Fouda AY, et al. Cysteine oxidation of copper transporter CTR1 drives VEGFR2 signalling and angiogenesis. Nat Cell Biol. 2022;24:35–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Vitaliti A, Roccatani I, Iorio E, et al. AKT-driven epithelial-mesenchymal transition is affected by copper bioavailability in HER2 negative breast cancer cells via a LOXL2-independent mechanism. Cell Oncol (Dordr). 2022.

  105. Chang CJ. Searching for harmony in transition-metal signaling. Nat Chem Biol. 2015;11:744–7.

    PubMed  CAS  Google Scholar 

  106. Korzeniecki C, Priefer R. Targeting KRAS mutant cancers by preventing signaling transduction in the MAPK pathway. Eur J Med Chem. 2021;211: 113006.

    PubMed  CAS  Google Scholar 

  107. Samatar AA, Poulikakos PI. Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Discov. 2014;13:928–42.

    PubMed  CAS  Google Scholar 

  108. He F, Chang C, Liu B, et al. Copper (II) Ions Activate Ligand-Independent Receptor Tyrosine Kinase (RTK) Signaling Pathway. Biomed Res Int. 2019;2019:4158415.

    PubMed  PubMed Central  Google Scholar 

  109. Turski ML, Brady DC, Kim HJ, et al. A novel role for copper in Ras/mitogen-activated protein kinase signaling. Mol Cell Biol. 2012;32:1284–95.

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Brady DC, Crowe MS, Turski ML, et al. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature. 2014;509:492–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  111. Brady DC, Crowe MS, Greenberg DN, et al. Copper chelation inhibits BRAFV600E-driven melanomagenesis and counters resistance to BRAFV600E and MEK1/2 inhibitors. Cancer Res. 2017;77:6240–52.

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Aubert L, Nandagopal N, Steinhart Z, et al. Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nat Commun. 2020;11:3701.

    PubMed  PubMed Central  CAS  Google Scholar 

  113. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147:728–41.

    PubMed  CAS  Google Scholar 

  114. Chan EY, Kir S, Tooze SA. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J Biol Chem. 2007;282:25464–74.

    PubMed  CAS  Google Scholar 

  115. Ganley IG, Lam du H, Wang J, et al. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009;284:12297–305.

  116. Hosokawa N, Hara T, Kaizuka T, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20:1981–91.

    PubMed  PubMed Central  CAS  Google Scholar 

  117. Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20:1992–2003.

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Thoreen CC, Chantranupong L, Keys HR, et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature. 2012;485:109–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  119. Tsang T, Posimo JM, Gudiel AA, et al. Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat Cell Biol. 2020;22:412–24.

    PubMed  PubMed Central  CAS  Google Scholar 

  120. Ash D, Sudhahar V, Youn SW, et al. The P-type ATPase transporter ATP7A promotes angiogenesis by limiting autophagic degradation of VEGFR2. Nat Commun. 2021;12:3091.

    PubMed  PubMed Central  CAS  Google Scholar 

  121. Krishnamoorthy L, Cotruvo JA Jr, Chan J, et al. Copper regulates cyclic-AMP-dependent lipolysis. Nat Chem Biol. 2016;12:586–92.

    PubMed  PubMed Central  CAS  Google Scholar 

  122. Opazo CM, Lotan A, Xiao Z, et al. Copper signaling promotes proteostasis and animal development via allosteric activation of ubiquitin E2D conjugases. Preprint at bioRxiv https://doi.org/10.1101/20210215431211 2021.

  123. Kang J, Lin C, Chen J, et al. Copper induces histone hypoacetylation through directly inhibiting histone acetyltransferase activity. Chem Biol Interact. 2004;148:115–23.

    PubMed  CAS  Google Scholar 

  124. Tai Z, Li L, Zhao G, et al. Copper stress impairs angiogenesis and lymphangiogenesis during zebrafish embryogenesis by down-regulating pERK1/2-foxm1-MMP2/9 axis and epigenetically regulating ccbe1 expression. Angiogenesis. 2022;25:241–57.

    PubMed  CAS  Google Scholar 

  125. Solier S, Müller S, Cañeque T, et al. A druggable copper-signalling pathway that drives inflammation. Nature. 2023;617:386–94.

    PubMed  PubMed Central  CAS  Google Scholar 

  126. Shen X, Zhao B. Efficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: meta-analysis. BMJ. 2018;362: k3529.

    PubMed  PubMed Central  Google Scholar 

  127. Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33:1974-U161.

    PubMed  PubMed Central  CAS  Google Scholar 

  128. Voli F, Valli E, Lerra L, et al. intratumoral copper modulates PD-L1 expression and influences tumor immune evasion. Cancer Res. 2020;80:4129–44.

    PubMed  CAS  Google Scholar 

  129. Da Silva, J.F. and Williams, R.J.P. The Biological chemistry of the elements: the inorganic chemistry of life: Oxford University Press, 2001.

  130. Erxleben A. Interactions of copper complexes with nucleic acids. Coord Chem Rev. 2018;360:92–121.

    CAS  Google Scholar 

  131. Ohri N, Dawson LA, Krishnan S, et al. Radiotherapy for Hepatocellular Carcinoma: New Indications and Directions for Future Study. J Natl Cancer Inst 2016;108.

  132. Yang Q, Xie B, Tang H, et al. Minichromosome maintenance 3 promotes hepatocellular carcinoma radioresistance by activating the NF-κB pathway. J Exp Clin Cancer Res. 2019;38:263.

    PubMed  PubMed Central  Google Scholar 

  133. Zhang S, Hu Y, Wu Z, et al. Deficiency of Carbamoyl Phosphate Synthetase 1 Engenders Radioresistance in Hepatocellular Carcinoma via Deubiquitinating c-Myc. Int J Radiat Oncol Biol Phys. 2022.

  134. Yang M, Wu X, Hu J, et al. COMMD10 inhibits HIF1alpha/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma. J Hepatol. 2022;76:1138–50.

    PubMed  CAS  Google Scholar 

  135. Voskoboinik I, Strausak D, Greenough M, et al. Functional analysis of the N-terminal CXXC metal-binding motifs in the human Menkes copper-transporting P-type ATPase expressed in cultured mammalian cells. J Biol Chem. 1999;274:22008–12.

    PubMed  CAS  Google Scholar 

  136. Skjørringe T, Amstrup Pedersen P, Salling Thorborg S, et al. Characterization of ATP7A missense mutants suggests a correlation between intracellular trafficking and severity of Menkes disease. Sci Rep. 2017;7:757.

    PubMed  PubMed Central  Google Scholar 

  137. Hsi G, Cullen LM, Macintyre G, et al. Sequence variation in the ATP-binding domain of the Wilson disease transporter, ATP7B, affects copper transport in a yeast model system. Hum Mutat. 2008;29:491–501.

    PubMed  CAS  Google Scholar 

  138. Walker JM, Tsivkovskii R, Lutsenko S. Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson’s disease protein and regulates its catalytic activity. J Biol Chem. 2002;277:27953–9.

    PubMed  CAS  Google Scholar 

  139. Hung IH, Casareno RL, Labesse G, et al. HAH1 is a copper-binding protein with distinct amino acid residues mediating copper homeostasis and antioxidant defense. J Biol Chem. 1998;273:1749–54.

    PubMed  CAS  Google Scholar 

  140. Banci L, Bertini I, Ciofi-Baffoni S, et al. An NMR study of the interaction between the human copper(I) chaperone and the second and fifth metal-binding domains of the Menkes protein. Febs J. 2005;272:865–71.

    PubMed  CAS  Google Scholar 

  141. Zhou B, Gitschier J. hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci U S A. 1997;94:7481–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  142. Casareno RL, Waggoner D, Gitlin JD. The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase. J Biol Chem. 1998;273:23625–8.

    PubMed  CAS  Google Scholar 

  143. Wyatt AR, Wilson MR. Identification of human plasma proteins as major clients for the extracellular chaperone clusterin. J Biol Chem. 2010;285:3532–9.

    PubMed  CAS  Google Scholar 

  144. Zong S, Wu M, Gu J, et al. Structure of the intact 14-subunit human cytochrome c oxidase. Cell Res. 2018;28:1026–34.

    PubMed  PubMed Central  CAS  Google Scholar 

  145. Petruzzella V, Tiranti V, Fernandez P, et al. Identification and characterization of human cDNAs specific to BCS1, PET112, SCO1, COX15, and COX11, five genes involved in the formation and function of the mitochondrial respiratory chain. Genomics. 1998;54:494–504.

    PubMed  CAS  Google Scholar 

  146. Oswald C, Krause-Buchholz U, Rödel G. Knockdown of human COX17 affects assembly and supramolecular organization of cytochrome c oxidase. J Mol Biol. 2009;389:470–9.

    PubMed  CAS  Google Scholar 

  147. Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468–72.

    PubMed  CAS  Google Scholar 

  148. Masson N, Willam C, Maxwell PH, et al. Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. Embo j. 2001;20:5197–206.

    PubMed  PubMed Central  CAS  Google Scholar 

  149. Guo DC, Regalado ES, Gong L, et al. LOX Mutations Predispose to Thoracic Aortic Aneurysms and Dissections. Circ Res. 2016;118:928–34.

    PubMed  PubMed Central  CAS  Google Scholar 

  150. Kissling MM, Kägi HR. Primary structure of human hepatic metallothionein. FEBS Lett. 1977;82:247–50.

    PubMed  CAS  Google Scholar 

  151. Zheng CF, Guan KL. Cloning and characterization of two distinct human extracellular signal-regulated kinase activator kinases, MEK1 and MEK2. J Biol Chem. 1993;268:11435–9.

    PubMed  CAS  Google Scholar 

  152. Stewart S, Sundaram M, Zhang Y, et al. Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol Cell Biol. 1999;19:5523–34.

    PubMed  PubMed Central  CAS  Google Scholar 

  153. Burr ML, Sparbier CE, Chan YC, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature. 2017;549:101–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  154. Mezzadra R, Sun C, Jae LT, et al. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature. 2017;549:106–10.

    PubMed  PubMed Central  CAS  Google Scholar 

  155. Jung CH, Seo M, Otto NM, et al. ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Autophagy. 2011;7:1212–21.

    PubMed  PubMed Central  CAS  Google Scholar 

  156. Löffler AS, Alers S, Dieterle AM, et al. Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy. 2011;7:696–706.

    PubMed  Google Scholar 

  157. Zhong X, Dai X, Wang Y, et al. Copper-based nanomaterials for cancer theranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14: e1797.

    PubMed  CAS  Google Scholar 

  158. Jin X, Zhang W, Shan J, et al. Thermosensitive hydrogel loaded with nickel-copper bimetallic hollow nanospheres with SOD and CAT enzymatic-like activity promotes acute wound healing. ACS Appl Mater Interfaces. 2022;14:50677–91.

    PubMed  CAS  Google Scholar 

  159. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–49.

    PubMed  PubMed Central  CAS  Google Scholar 

  160. Zheng R, Cheng Y, Qi F, et al. Biodegradable copper-based nanoparticles augmented chemodynamic therapy through deep penetration and suppressing antioxidant activity in tumors. Adv Healthc Mater. 2021;10: e2100412.

    PubMed  Google Scholar 

  161. Lelièvre P, Sancey L, Coll JL, et al. The multifaceted roles of copper in cancer: a trace metal element with dysregulated metabolism, but also a target or a bullet for therapy. Cancers (Basel). 2020;12.

  162. Camats M, Pla D, Gómez M. Copper nanocatalysts applied in coupling reactions: a mechanistic insight. Nanoscale. 2021;13:18817–38.

    PubMed  CAS  Google Scholar 

  163. Tsymbal S, Li G, Agadzhanian N, et al. Recent Advances in Copper-Based Organic Complexes and Nanoparticles for Tumor Theranostics. Molecules 2022;27.

  164. Mehdizadeh T, Zamani A, Abtahi Froushani SM. Preparation of Cu nanoparticles fixed on cellulosic walnut shell material and investigation of its antibacterial, antioxidant and anticancer effects. Heliyon. 2020;6: e03528.

    PubMed  PubMed Central  CAS  Google Scholar 

  165. Vutey V, Castelli S, D’Annessa I, et al. Human topoisomerase IB is a target of a thiosemicarbazone copper(II) complex. Arch Biochem Biophys. 2016;606:34–40.

    PubMed  CAS  Google Scholar 

  166. Rajagopal G, Nivetha A, Sundar M, et al. Mixed phytochemicals mediated synthesis of copper nanoparticles for anticancer and larvicidal applications. Heliyon. 2021;7: e07360.

    PubMed  PubMed Central  CAS  Google Scholar 

  167. Xu R, Zhang K, Liang J, et al. Hyaluronic acid/polyethyleneimine nanoparticles loaded with copper ion and disulfiram for esophageal cancer. Carbohydr Polym. 2021;261: 117846.

    PubMed  CAS  Google Scholar 

  168. Kalaiarasi A, Sankar R, Anusha C, et al. Copper oxide nanoparticles induce anticancer activity in A549 lung cancer cells by inhibition of histone deacetylase. Biotechnol Lett. 2018;40:249–56.

    PubMed  CAS  Google Scholar 

  169. Xu Y, Liu SY, Zeng L, et al. An enzyme-engineered nonporous copper(I) coordination polymer nanoplatform for cuproptosis-based synergistic cancer therapy. Adv Mater. 2022;34: e2204733.

    PubMed  Google Scholar 

  170. Cui L, Gouw AM, LaGory EL, et al. Mitochondrial copper depletion suppresses triple-negative breast cancer in mice. Nat Biotechnol. 2021;39:357–67.

    PubMed  CAS  Google Scholar 

  171. Li J, Zhang Z, Li J, et al. Copper-olsalazine metal-organic frameworks as a nanocatalyst and epigenetic modulator for efficient inhibition of colorectal cancer growth and metastasis. Acta Biomater. 2022;152:495–506.

    PubMed  CAS  Google Scholar 

  172. Lai WF, Wong WT, Rogach AL. Development of copper nanoclusters for in vitro and in vivo theranostic applications. Adv Mater. 2020;32: e1906872.

    PubMed  Google Scholar 

  173. Dutta A, Goswami U, Chattopadhyay A. Probing cancer cells through intracellular aggregation-induced emission kinetic rate of copper nanoclusters. ACS Appl Mater Interfaces. 2018;10:19459–72.

    PubMed  CAS  Google Scholar 

  174. Gao F, Cai P, Yang W, et al. Ultrasmall [(64)Cu]Cu nanoclusters for targeting orthotopic lung tumors using accurate positron emission tomography imaging. ACS Nano. 2015;9:4976–86.

    PubMed  CAS  Google Scholar 

  175. Bonham M, O’Connor JM, Hannigan BM, et al. The immune system as a physiological indicator of marginal copper status? Br J Nutr. 2002;87:393–403.

    PubMed  CAS  Google Scholar 

  176. Wintergerst ES, Maggini S, Hornig DH. Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab. 2007;51:301–23.

    PubMed  CAS  Google Scholar 

  177. Chang M, Hou Z, Jin D, et al. Colorectal tumor microenvironment-activated bio-decomposable and metabolizable Cu(2) O@CaCO(3) nanocomposites for synergistic oncotherapy. Adv Mater. 2020;32: e2004647.

    PubMed  Google Scholar 

  178. Chang M, Hou Z, Wang M, et al. Cu(2) MoS(4) /Au heterostructures with enhanced catalase-like activity and photoconversion efficiency for primary/metastatic tumors eradication by phototherapy-induced immunotherapy. Small. 2020;16: e1907146.

    PubMed  Google Scholar 

  179. Zamagni E, Patriarca F, Nanni C, et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood. 2011;118:5989–95.

    PubMed  CAS  Google Scholar 

  180. Krishnan A, Adhikarla V, Poku EK, et al. Identifying CD38+ cells in patients with multiple myeloma: first-in-human imaging using copper-64-labeled daratumumab. Blood Adv. 2020;4:5194–202.

    PubMed  PubMed Central  CAS  Google Scholar 

  181. Mascia M, Villano C, De Francesco V, et al. Efficacy and safety of the 64Cu(II)Cl2 PET/CT for urological malignancies: phase iia clinical study. Clin Nucl Med. 2021;46:443–8.

    PubMed  Google Scholar 

  182. Chan N, Willis A, Kornhauser N, et al. Influencing the tumor microenvironment: a phase II study of copper depletion using tetrathiomolybdate in patients with breast cancer at high risk for recurrence and in preclinical models of lung metastases. Clin Cancer Res. 2017;23:666–76.

    PubMed  CAS  Google Scholar 

  183. Bao YW, Hua XW, Li YH, et al. Hyperthemia-promoted cytosolic and nuclear delivery of copper/carbon quantum dot-crosslinked nanosheets: multimodal imaging-guided photothermal cancer therapy. ACS Appl Mater Interfaces. 2018;10:1544–55.

    PubMed  CAS  Google Scholar 

  184. Wang X, Zhong X, Lei H, et al. Hollow Cu2Se nanozymes for tumor photothermal-catalytic therapy. Chem Mater. 2019;31:6174–86.

    CAS  Google Scholar 

  185. Wang S, Yin N, Li Y, et al. Copper-based metal-organic framework impedes triple-negative breast cancer metastasis via local estrogen deprivation and platelets blockade. J Nanobiotechnology. 2022;20:313.

    PubMed  PubMed Central  CAS  Google Scholar 

  186. Yang Z, Yang A, Ma W, et al. Atom-precise fluorescent copper cluster for tumor microenvironment targeting and transient chemodynamic cancer therapy. J Nanobiotechnology. 2022;20:20.

    PubMed  PubMed Central  CAS  Google Scholar 

  187. Mani VM, Kalaivani S, Sabarathinam S, et al. Copper oxide nanoparticles synthesized from an endophytic fungus Aspergillus terreus: Bioactivity and anti-cancer evaluations. Environ Res. 2021;201: 111502.

    PubMed  CAS  Google Scholar 

  188. Lu Y, Pan Q, Gao W, et al. Reversal of cisplatin chemotherapy resistance by glutathione-resistant copper-based nanomedicine via cuproptosis. J Mater Chem B. 2022;10:6296–306.

    PubMed  Google Scholar 

  189. Zhang N, Zheng Y, Wang Z, et al. Copper(II) based low molecular weight collagen fragments-chlorin e6 nanoparticles synergize anti-cancer and anti-bacteria photodynamic therapy. J Photochem Photobiol B. 2022;232: 112473.

    PubMed  CAS  Google Scholar 

  190. Zhu D, Ling R, Chen H, et al. Biomimetic copper single-atom nanozyme system for self-enhanced nanocatalytic tumor therapy. Nano Res. 2022;15:7320–8.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.cn) for English language editing.

Funding

This study was funded by the Anhui Provincial University Research Projects (2022AH050779); the Key Research and Development Project of Anhui Provincial Department of Science and Technology (202004j07020036); the Key Teaching Research Project of Anhui Provincial Department of Education (2020xsxxkc247), and the Wu Jieping Medical Fund (320.6750.19092–19).

Author information

Authors and Affiliations

Authors

Contributions

We are grateful to Prof. KH for reviewing the manuscript. During the manuscript creation process, CF and ZP conceived the initial idea and took on the main task of writing. YS, ZR, and HD participated in the drawing of the accompanying pictures and literature collection. All authors assessed the literature and participated in manuscript revision, read and approve the final manuscript.

Corresponding author

Correspondence to Kongwang Hu.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, C., Peng, Z., Sang, Y. et al. Copper in Cancer: from transition metal to potential target. Human Cell 37, 85–100 (2024). https://doi.org/10.1007/s13577-023-00985-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00985-5

Keywords

Navigation