Skip to main content

Advertisement

Log in

Multi-omic profiling and real time ex vivo modelling of imatinib-resistant dermatofibrosarcoma protuberans with fibrosarcomatous transformation

  • Cell Line
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Dermatofibrosarcoma protuberans (DFSP) is a rare and indolent cutaneous sarcoma, with the risk of aggressive fibro-sarcomatous transformation. Limited effective options are available for un-resectable or metastatic DFSP beyond targeting the oncogenic PDGF pathway with imatinib therapy. We established a patient-derived xenograft (PDX) and cell line model (designated MDFSP-S1) of imatinib-resistant DFSP with fibro-sarcomatous transformation. Whole genome sequencing identified high-level amplification at chromosomes 17 and 22, whilst homozygous deep deletion was demonstrated at chromosome 9 (CDKN2A, CDKN2B, MTAP). RNA sequencing followed by Sanger sequencing confirmed the pathognomonic COL1A1-PDGFB t (17;22) rearrangement in the original tumour, PDX and cell line model. Immunohistochemistry profiles of the PDX model were consistent with the patient’s tumour sample (CD34 + /MIB1 + /SOX10− ). Gene set enrichment analysis highlighted top-scoring Hallmark gene sets in several oncogenic signalling pathways, including potentially targetable MTORC1 signalling and angiogenesis pathways. Antiangiogenic agents (sunitinib, regorafenib, pazopanib, axitinib) and the third-generation irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor osimertinib exhibited modest anti-proliferative activity in the cell line, with IC50 values between 1 and 10 µM at 72 h. No significant activity was observed with imatinib, palbociclib, everolimus, olaparib, gefitinib and erlotinib (IC50 all > 10 µM). In conclusion, we established MDFSP-S1, a new PDX and cell line model of imatinib-resistant DFSP with fibro-sarcomatous transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fiore M, Miceli R, Mussi C, et al. Dermatofibrosarcoma protuberans treated at a single institution: a surgical disease with a high cure rate. J Clin Oncol. 2005;23(30):7669–75.

    Article  PubMed  Google Scholar 

  2. Rutkowski P, Klimczak A, Ługowska I, et al. Long-term results of treatment of advanced dermatofibrosarcoma protuberans (DFSP) with imatinib mesylate—the impact of fibrosarcomatous transformation. Eur J Surg Oncol. 2017;43(6):1134–41.

    Article  CAS  PubMed  Google Scholar 

  3. McArthur GA, Demetri GD, van Oosterom A, et al. Molecular and clinical analysis of locally advanced dermatofibrosarcoma protuberans treated with imatinib: Imatinib Target Exploration Consortium Study B2225. J Clin Oncol. 2005;23(4):866–73.

    Article  CAS  PubMed  Google Scholar 

  4. Rutkowski P, Van Glabbeke M, Rankin CJ, et al. Imatinib mesylate in advanced dermatofibrosarcoma protuberans: pooled analysis of two phase II clinical trials. J Clin Oncol. 2010;28(10):1772–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stacchiotti S, Pantaleo MA, Negri T, et al. Efficacy and biological activity of imatinib in metastatic dermatofibrosarcoma protuberans (DFSP). Clin Cancer Res. 2016;22(4):837–46.

    Article  CAS  PubMed  Google Scholar 

  6. Navarrete-Dechent C, Mori S, Barker CA, Dickson MA, Nehal KS. Imatinib treatment for locally advanced or metastatic dermatofibrosarcoma protuberans: a systematic review. JAMA Dermatol. 2019;155(3):361–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stacchiotti S, Pedeutour F, Negri T, et al. Dermatofibrosarcoma protuberans-derived fibrosarcoma: clinical history, biological profile and sensitivity to imatinib. Int J Cancer. 2011;129(7):1761–72.

    Article  CAS  PubMed  Google Scholar 

  8. Hong JY, Liu X, Mao M, et al. Genetic aberrations in imatinib-resistant dermatofibrosarcoma protuberans revealed by whole genome sequencing. PLoS One. 2013;8(7): e69752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oh E, Jeong HM, Kwon MJ, et al. Unforeseen clonal evolution of tumor cell population in recurrent and metastatic dermatofibrosarcoma protuberans. PLoS One. 2017;12(10): e0185826.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Eilers G, Czaplinski JT, Mayeda M, et al. CDKN2A/p16 loss implicates CDK4 as a therapeutic target in imatinib-resistant dermatofibrosarcoma protuberans. Mol Cancer Ther. 2015;14(6):1346–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ng DYX, Li Z, Lee E, et al. Therapeutic and immunomodulatory potential of pazopanib in malignant phyllodes tumor. NPJ Breast Cancer. 2022;8(1):44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang JW, Hsieh JJ, Wu CE, et al. Genomic landscapes of acral melanomas in east Asia. Cancer Genomics Proteomics. 2021;18(1):83–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McLaren W, Gil L, Hunt S, et al. The ensembl variant effect predictor. Genome Biol. 2016;17(1):122.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Alexandrov LB, Kim J, Haradhvala NJ, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578(7793):94–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011;12(4):R41.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ha G, Roth A, Khattra J, et al. TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data. Genome Res. 2014;24(11):1881–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  20. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4:1521.

    Article  PubMed  Google Scholar 

  22. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov J, Tamayo P. The molecular signatures database hallmark gene set collection. Cell Syst. 2015;1(6):417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang W, Soares J, Greninger P, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41(Database issue):D955–61.

    CAS  PubMed  Google Scholar 

  24. Sjöblom T, Shimizu A, O’Brien KP, et al. Growth inhibition of dermatofibrosarcoma protuberans tumors by the platelet-derived growth factor receptor antagonist STI571 through induction of apoptosis. Cancer Res. 2001;61(15):5778–83.

    PubMed  Google Scholar 

  25. Greco A, Roccato E, Miranda C, Cleris L, Formelli F, Pierotti MA. Growth-inhibitory effect of STI571 on cells transformed by the COL1A1/PDGFB rearrangement. Int J Cancer. 2001;92(3):354–60.

    Article  CAS  PubMed  Google Scholar 

  26. Stacchiotti S, Astolfi A, Gronchi A, et al. Evolution of dermatofibrosarcoma protuberans to DFSP-derived fibrosarcoma: an event marked by epithelial-mesenchymal transition-like process and 22q loss. Mol Cancer Res. 2016;14(9):820–9.

    Article  CAS  PubMed  Google Scholar 

  27. Hiraki-Hotokebuchi Y, Yamada Y, Kohashi K, et al. Alteration of PDGFRβ-Akt-mTOR pathway signaling in fibrosarcomatous transformation of dermatofibrosarcoma protuberans. Hum Pathol. 2017;67:60–8.

    Article  CAS  PubMed  Google Scholar 

  28. Fu Y, Kang H, Zhao H, et al. Sunitinib for patients with locally advanced or distantly metastatic dermatofibrosarcoma protuberans but resistant to imatinib. Int J Clin Exp Med. 2015;8(5):8288–94.

    PubMed  PubMed Central  Google Scholar 

  29. Fields RC, Hameed M, Qin LX, et al. Dermatofibrosarcoma protuberans (DFSP): predictors of recurrence and the use of systemic therapy. Ann Surg Oncol. 2011;18(2):328–36.

    Article  PubMed  Google Scholar 

  30. Kamar FG, Kairouz VF, Sabri AN. Dermatofibrosarcoma protuberans (DFSP) successfully treated with sorafenib: case report. Clin Sarcoma Res. 2013;3(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Delyon J, Porcher R, Battistella M, et al. A multicenter phase II study of pazopanib in patients with unresectable dermatofibrosarcoma protuberans. J Invest Dermatol. 2021;141(4):761-9.e2.

    Article  CAS  PubMed  Google Scholar 

  32. Osio A, Xu S, El Bouchtaoui M, et al. EGFR is involved in dermatofibrosarcoma protuberans progression to high grade sarcoma. Oncotarget. 2018;9(9):8478–88.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Singapore Ministry of Health’s National Medical Research Council under its Transition Award (TA21jun-0005) and RTF Seed Fund (SEEDFD21jun-0002); SingHealth Duke-NUS Academic Medical Centre and Oncology ACP Sarcoma Research Fund (08-FY2020/EX/25-A96 and 08-FY2020/EX/75-A151).

Author information

Authors and Affiliations

Authors

Contributions

JYC generated the experimental data and drafted the manuscript; ECL, ZL and JYL performed the cell line and xenograft experiments; AHL performed bioinformatic analysis. EP provided patient samples and clinical data. JYC and EP conceived the study, interpreted the results, and revised the manuscript; and all authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Jason Yongsheng Chan or Eileen Poon.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethical approval

Ethics approval from the SingHealth Centralized Institution Review Board was obtained for tissue collection and consent protocols (2010.426.B). Xenograft studies were conducted in compliance with animal protocols approved by the SingHealth Institutional Animal Care and Use Committee (IACUC) (2018/SHS/1371).

Informed consent

Written informed consent from the patient for use of clinical data and bio-specimens was obtained in accordance with the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 5558 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, J.Y., Lee, E.C.Y., Li, Z. et al. Multi-omic profiling and real time ex vivo modelling of imatinib-resistant dermatofibrosarcoma protuberans with fibrosarcomatous transformation. Human Cell 36, 2228–2236 (2023). https://doi.org/10.1007/s13577-023-00974-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00974-8

Keywords

Navigation