Skip to main content

Advertisement

Log in

Efficacy of redox nanoparticles for improving survival of transplanted cells in a mouse model of ischemic stroke

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

The success of cell transplantation therapy for ischemic stroke is hindered by the low cell survival rate in poststroke brain, due in part to high free radical production and ensuing oxidative stress. We have developed redox nanoparticles to eliminate reactive oxygen species. In this study, we tested the protective efficacy of these redox nanoparticles in cell culture and a mouse model of ischemic stroke. Induced human dental pulp stem cells were subjected to oxygen–glucose deprivation and reoxygenation to recapitulate ischemia and reperfusion in the penumbra surrounding a cerebral infarct. Cell viability using WST-8 assay, apoptosis using TUNEL, free radicals using MitoSOX, and inflammatory cytokines using ELISA kit were measured in the presence and absence of redox nanoparticles after oxygen–glucose deprivation and reoxygenation. The scavenging activity of redox nanoparticles against reactive oxygen species was detected by electron spin resonance. Moreover, induced cells were transplanted intracerebrally into to the distal middle cerebral artery occlusion model with and without redox nanoparticles, and the survival rate measured. Cell viability was enhanced, while apoptosis, free radical generation, and inflammatory cytokine expression levels were reduced in cultures with redox nanoparticles. Further, reduced redox nanoparticles were detected in the cytoplasm, indicating free radical scavenging. Addition of redox nanoparticles also improved the survival rate of transplanted cells after 6 weeks in vivo. These redox nanoparticles may increase the applicability and success of induced stem cell therapy for ischemic stroke patents by promoting long-term survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Johnson W, Onuma O, Owolabi M, Sachdev S. Stroke: a global response is needed. Bull World Health Organ. 2016;94:634.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387:1723–31.

    Article  PubMed  Google Scholar 

  3. Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17:796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang JL, Mukda S, Chen SD. Diverse roles of mitochondria in ischemic stroke. Redox Biol. 2018;16:263–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hess DC, Wechsler LR, Clark WM, et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2017;16:360–8.

    Article  PubMed  Google Scholar 

  6. Kawabori M, Shichinohe H, Kuroda S, Houkin K. Clinical trials of stem cell therapy for cerebral ischemic stroke. Int J Mol Sci. 2020;21:7380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Steinberg GK, Kondziolka D, Wechsler LR, et al. Clinical outcomes of transplanted modified bone marrow-derived mesenchymal stem cells in stroke: a phase 1/2a study. Stroke. 2016;47:1817–24.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cui LL, Golubczyk D, Tolppanen AM, Boltze J, Jolkkonen J. Cell therapy for ischemic stroke: are differences in preclinical and clinical study design responsible for the translational loss of efficacy? Ann Neurol. 2019;86:5–16.

    PubMed  Google Scholar 

  9. Bliss T, Guzman R, Daadi M, Steinberg GK. Cell transplantation therapy for stroke. Stroke. 2007;38:817–26.

    Article  PubMed  Google Scholar 

  10. Nakagomi N, Nakagomi T, Kubo S, et al. Endothelial cells support survival, proliferation, and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction. Stem Cells (Dayton, Ohio). 2009;27:2185–95.

    Article  PubMed  Google Scholar 

  11. Hosoo H, Marushima A, Nagasaki Y, et al. Neurovascular unit protection from cerebral ischemia-reperfusion injury by radical-containing nanoparticles in mice. Stroke. 2017;48:2238–47.

    Article  PubMed  Google Scholar 

  12. Marushima A, Suzuki K, Nagasaki Y, et al. Newly synthesized radical-containing nanoparticles enhance neuroprotection after cerebral ischemia-reperfusion injury. Neurosurgery 2011; 68:1418–25 (discussion 25–6).

  13. Mujagić A, Marushima A, Nagasaki Y, et al. Antioxidant nanomedicine with cytoplasmic distribution in neuronal cells shows superior neurovascular protection properties. Brain Res. 2020;1743: 146922.

    Article  PubMed  Google Scholar 

  14. Takahashi T, Marushima A, Nagasaki Y, et al. Novel neuroprotection using antioxidant nanoparticles in a mouse model of head trauma. J Trauma Acute Care Surg. 2020;88:677–85.

    Article  CAS  PubMed  Google Scholar 

  15. Mei T, Kim A, Vong LB, et al. Encapsulation of tissue plasminogen activator in pH-sensitive self-assembled antioxidant nanoparticles for ischemic stroke treatment - synergistic effect of thrombolysis and antioxidant. Biomaterials. 2019;215: 119209.

    Article  CAS  PubMed  Google Scholar 

  16. Kato N, Yanaka K, Hyodo K, Homma K, Nagase S, Nose T. Stable nitroxide tempol ameliorates brain injury by inhibiting lipid peroxidation in a rat model of transient focal cerebral ischemia. Brain Res. 2003;979:188–93.

    Article  CAS  PubMed  Google Scholar 

  17. Vong LB, Kobayashi M, Nagasaki Y. Evaluation of the toxicity and antioxidant activity of redox nanoparticles in zebrafish (Danio rerio) embryos. Mol Pharm. 2016;13:3091–7.

    Article  CAS  PubMed  Google Scholar 

  18. Metz JM, Smith D, Mick R, et al. A phase I study of topical tempol for the prevention of alopecia induced by whole brain radiotherapy. Clin Cancer Res. 2004;10:6411–7.

    Article  CAS  PubMed  Google Scholar 

  19. Yoshitomi T, Suzuki R, Mamiya T, Matsui H, Hirayama A, Nagasaki Y. pH-sensitive radical-containing-nanoparticle (RNP) for the L-band-EPR imaging of low pH circumstances. Bioconjug Chem. 2009;20:1792–8.

    Article  CAS  PubMed  Google Scholar 

  20. Yoshitomi T, Miyamoto D, Nagasaki Y. Design of core–shell-type nanoparticles carrying stable radicals in the core. Biomacromol. 2009;10:596–601.

    Article  CAS  Google Scholar 

  21. Takahashi H, Ishikawa H, Tanaka A. Regenerative medicine for Parkinson’s disease using differentiated nerve cells derived from human buccal fat pad stem cells. Hum Cell. 2017;30:60–71.

    Article  CAS  PubMed  Google Scholar 

  22. Abramov AY, Scorziello A, Duchen MR. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci. 2007;27:1129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vong LB, Yoshitomi T, Matsui H, Nagasaki Y. Development of an oral nanotherapeutics using redox nanoparticles for treatment of colitis-associated colon cancer. Biomaterials. 2015;55:54–63.

    Article  CAS  PubMed  Google Scholar 

  24. Taguchi A, Soma T, Tanaka H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest. 2004;114:330–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu D, Serrano F, Oury TD, Klann E. Aging-dependent alterations in synaptic plasticity and memory in mice that overexpress extracellular superoxide dismutase. J Neurosci. 2006;26:3933–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bouet V, Boulouard M, Toutain J, Divoux D, Bernaudin M, Schumann-Bard P, Freret T. The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat Protoc. 2009;4:1560–4.

    Article  CAS  PubMed  Google Scholar 

  27. Craft TK, Glasper ER, McCullough L, et al. Social interaction improves experimental stroke outcome. Stroke. 2005;36:2006–11.

    Article  PubMed  Google Scholar 

  28. Rosado-de-Castro PH, Schmidt FR, Battistella V, et al. Biodistribution of bone marrow mononuclear cells after intra-arterial or intravenous transplantation in subacute stroke patients. Regen Med. 2013;8:145–55.

    Article  CAS  PubMed  Google Scholar 

  29. Ishibashi S, Sakaguchi M, Kuroiwa T, et al. Human neural stem/progenitor cells, expanded in long-term neurosphere culture, promote functional recovery after focal ischemia in Mongolian gerbils. J Neurosci Res. 2004;78:215–23.

    Article  CAS  PubMed  Google Scholar 

  30. Toda H, Takahashi J, Iwakami N, et al. Grafting neural stem cells improved the impaired spatial recognition in ischemic rats. Neurosci Lett. 2001;316:9–12.

    Article  CAS  PubMed  Google Scholar 

  31. Sakata H, Niizuma K, Wakai T, Narasimhan P, Maier CM, Chan PH. Neural stem cells genetically modified to overexpress cu/zn-superoxide dismutase enhance amelioration of ischemic stroke in mice. Stroke. 2012;43:2423–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Landi S, Moreno V, Gioia-Patricola L, et al. Association of common polymorphisms in inflammatory genes interleukin (IL)6, IL8, tumor necrosis factor alpha, NFKB1, and peroxisome proliferator-activated receptor gamma with colorectal cancer. Cancer Res. 2003;63:3560–6.

    CAS  PubMed  Google Scholar 

  33. Choi SS, Lee HJ, Lim I, Satoh J, Kim SU. Human astrocytes: secretome profiles of cytokines and chemokines. PLoS ONE. 2014;9: e92325.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Van Wagoner NJ, Oh JW, Repovic P, Benveniste EN. Interleukin-6 (IL-6) production by astrocytes: autocrine regulation by IL-6 and the soluble IL-6 receptor. J Neurosci. 1999;19:5236–44.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55:329–47.

    Article  CAS  PubMed  Google Scholar 

  36. Ban S, Nakagawa H, Suzuki T, Miyata N. Novel mitochondria-localizing TEMPO derivative for measurement of cellular oxidative stress in mitochondria. Bioorg Med Chem Lett. 2007;17:2055–8.

    Article  CAS  PubMed  Google Scholar 

  37. Ikeda M, Nakagawa H, Ban S, Tsumoto H, Suzuki T, Miyata N. Development of a DNA-binding TEMPO derivative for evaluation of nuclear oxidative stress and its application in living cells. Free Rad Biol Med. 2010;49:1792–7.

    Article  CAS  PubMed  Google Scholar 

  38. Gancheva MR, Kremer KL, Gronthos S, Koblar SA. Using dental pulp stem cells for stroke therapy. Front Neurol. 2019;10:422.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Yoshiko Tsukada and Makiko Miyakawa from the Graduate School of Comprehensive Human Sciences, University of Tsukuba, for their technical support.

Funding

This work was supported by a Grant-in-Aid for Scientific Research (C) to YM. (no. 19K09450), Scientific Research (B), and JST FOREST Program, Grant Number JPMJFR2112 to AM (no. 20H03787). The design and preparation of RNPs was supported by a JSPS KAKENHI Grant-in-Aid for Scientific Research (S) under Grant Number 25220203 and a Grant-in-Aid for Specially promoted Research under Grant Number 19H05458 to YN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiki Marushima.

Ethics declarations

Conflict of interest

Koji Hirata, Aiki Marushima, Yukio Nagasaki, Hiroshi Ishikawa, Hideaki Matsumura, Arnela Mujagić, Aki Hirayama, Junko Toyomura, Akihiro Ohyama, Hiroki Bukawa, and Yuji Matsumaru are inventors of the redox nanoparticles used in this research and are listed on registered or pending patents. Aiki Marushima is the representative director and shareholder of CrestecBio Inc. and Yukio Nagasaki is an advisory and shareholder of CrestecBio Inc., which holds registered or pending patents on redox nanoparticles. The other authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirata, K., Marushima, A., Nagasaki, Y. et al. Efficacy of redox nanoparticles for improving survival of transplanted cells in a mouse model of ischemic stroke. Human Cell 36, 1703–1715 (2023). https://doi.org/10.1007/s13577-023-00940-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00940-4

Keywords

Navigation