Skip to main content
Log in

Embryonic transcription and epigenetics: root of the evil

  • Commentary
  • Published:
Human Cell Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Availability of data and material

Not applicable.

References

  1. Kobar K, Collet K, Prykhozhij SV, Berman JN. Zebrafish cancer predisposition models. Front Cell Dev Biol. 2021;9: 660069.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rahman N. Realizing the promise of cancer predisposition genes. Nature. 2014;505:302–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weatherbee BAT, Cui T, Zernicka-Goetz M. Modeling human embryo development with embryonic and extra-embryonic stem cells. Dev Biol. 2021;474:91–9.

    Article  CAS  PubMed  Google Scholar 

  4. Perry ACF, Asami M, Lam BYH, Yeo GSH. The initiation of mammalian embryonic transcription: to begin at the beginning. Trends Cell Biol. 2022;28: S0962-8924(22)00211-2.

    Google Scholar 

  5. Asami M, Lam BYH, Ma MK, et al. Human embryonic genome activation initiates at the one-cell stage. Cell Stem Cell. 2022;29:209–16 (e4).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jukam D, Shariati SAM, Skotheim JM. Zygotic genome activation in vertebrates. Dev Cell. 2017;42:316–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feinberg AP, Ohlsson R, Henikof S. The epigenetic progenitor origin of human cancer. Nat Rev Genet. 2006;7:21–33.

    Article  CAS  PubMed  Google Scholar 

  8. Skvortsova K, Iovino N, Bogdanovic O. Functions and mechanisms of epigenetic inheritance in animals. Nat Rev Mol Cell Biol. 2018;19:774–90.

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi Y, Valencia MM, Yu Y, et al. Transgenerational inheritance of acquired epigenetic signatures at CpG islands in mice. Cell. 2023;186:715-731.e19.

    Article  CAS  PubMed  Google Scholar 

  10. Sankar A, Lerdrup M, Manaf A, et al. KDM4A regulates the maternal-to-zygotic transition by protecting broad H3K4me3 domains from H3K9me3 invasion in oocytes. Nat Cell Biol. 2020;22:380–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaneshiro RK, Egelhofer TA, Rechtsteiner A, Cockrum C, Strome S. Sperm-inherited H3K27me3 epialleles are transmitted transgenerationally in cis. Proc Natl Acad Sci USA. 2022;119: e2209471119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lismer A, Dumeaux V, Lafleur C, Lambrot R, Brind’ Amour J, Lorincz MC, Kimmins S. Histone H3 lysine 4 trimethylation in sperm is transmitted to the embryo and associated with diet-induced phenotypes in the offspring. Dev Cell. 2021;56:671–86 (e6).

    Article  CAS  PubMed  Google Scholar 

  13. Lesch BJ, Tothova Z, Morgan EA, et al. Intergenerational epigenetic inheritance of cancer susceptibility in mammals. Elife. 2019;8: e39380.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Siklenka K, Erkek S, Godmann M, et al. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science. 2015;350: aab2006.

    Article  PubMed  Google Scholar 

  15. Raas MWD, Ziljlmans DW, Vermeulen M, Marks H. There is another: H3K27me3-mediated genomic imprinting. Trends Genet. 2022;38:82–96.

    Article  CAS  PubMed  Google Scholar 

  16. Zenk F, Loeser E, Schiavo R, Kilpert F, Bogdanovic O, Iovino N. Germ line-inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition. Science. 2017;357:212–6.

    Article  CAS  PubMed  Google Scholar 

  17. Boltsis I, Grosveld F, Giraud G, Kolovos P. Chromatin conformation in development and disease. Front Cell Dev Biol. 2021;9: 723859.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Deng S, Feng Y, Pauklin S. 3D Chromatin architecture and transcription regulation in cancer. J Hematol Oncol. 2022;15:49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hug CB, Grimaldi AG, Kruse K, Vaquerizas JM. Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell. 2017;169:216–28 (e19).

    Article  CAS  PubMed  Google Scholar 

  20. Eckersley-Maslin MA, Alda-Catalinas C, Reik W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat Rev Mol Cell Biol. 2018;19:436–50.

    Article  CAS  PubMed  Google Scholar 

  21. Benetatos L, Benetatou A, Vartholomatos G. Enhancers and MYC interplay in hematopoiesis. J Mol Med (Berl). 2020;98:471–81.

    Article  CAS  PubMed  Google Scholar 

  22. Benetatos L, Vartholomatos G, Hatzimichael E. Polycomb group proteins and MYC: the cancer connection. Cell Mol Life Sci. 2014;71:257–69.

    Article  CAS  PubMed  Google Scholar 

  23. Schuettengruber B, Bourbon HM, Di Croce L, Cavalli G. Genome regulation by polycomb and trithorax: 70 years and counting. Cell. 2017;171:34–57.

    Article  CAS  PubMed  Google Scholar 

  24. Chen Z, Zhang Y. Maternal H3K27me3-dependent autosomal and X chromosome imprinting. Nat Rev Genet. 2020;21:555–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aronson BA, Scourzic L, Shah V, et al. A bipartite element with allele-specific functions safeguards DNA methylation imprints at the Dlk1-Dio3 locus. Dev Cell. 2021;56:3052–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Landan G, Cohen NM, Mukamel Z, et al. Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nat Genet. 2012;44:1207–12014.

    Article  CAS  PubMed  Google Scholar 

  27. Benetatos L, Benetatou A, Vartholomatos G. Epialleles and epiallelic heterogeneity in hematological malignancies. Med Oncol. 2022;39:139.

    Article  PubMed  Google Scholar 

  28. Finer S, Holland ML, Nanty L, Rakyan VK. The hunt for the epiallele. Environ Mol Mutagen. 2011;52:1–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to those authors whose work has not been cited.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Both authors collected data and wrote the paper.

Corresponding author

Correspondence to Leonidas Benetatos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

Both authors agree with the submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benetatos, L., Vartholomatos, G. Embryonic transcription and epigenetics: root of the evil. Human Cell 36, 1830–1833 (2023). https://doi.org/10.1007/s13577-023-00937-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00937-z

Navigation