Skip to main content

Advertisement

Log in

Functions, mechanisms, and clinical applications of lncRNA LINC00857 in cancer pathogenesis

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Emerging data indicated that long noncoding RNAs (lncRNAs) are crucial players in the biological processes via regulating epigenetics, transcription, and protein translation. A novel lncRNA, LINC00857, was indicated to upregulate in several types of cancer. In addition, LINC00857 was functionally related to the modulation of the cancer-linked behaviors, including invasion, migration, proliferation, epithelial–mesenchymal transition (EMT), cell cycle, and apoptosis. The importance of LINC00857 in cancer onset and development proposed that LINC00857 has major importance in the cancer progression and may be considered as a novel prognostic/diagnostic biomarker as well as a treatment target. Here, we retrospectively investigate the available progress in biomedical research investigating the functions of LINC00857 in cancer, focusing on finding the molecular mechanisms affecting various cancer-related behaviors and exploring its clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing not applicable—no new data generated.

References

  1. Arzmi MH, et al. Epidemiology, detection and management of cancer: an overview. In: Deep learning in cancer diagnostics: a feature-based transfer learning evaluation. Springer: New York; 2023. p. 1–7.

    Google Scholar 

  2. Alberto NRI, et al. Disparities in access to cancer diagnostics in ASEAN member countries. Lancet Reg Health West Pac. 2023;32:100667.

    PubMed  PubMed Central  Google Scholar 

  3. Giuliani B, Tordonato C, Nicassio F. Mechanisms of long non-coding RNA in breast cancer. Int J Mol Sci. 2023;24(5):4538.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ma L, Zhang Z. The contribution of databases towards understanding the universe of long non-coding RNAs. Nat Rev Mol Cell Biol. 2023. https://doi.org/10.1038/s41580-023-00612-z.

    Article  PubMed  Google Scholar 

  5. Arunima A, Van Schaik EJ, Samuel JE. The emerging roles of long non-coding RNA in host immune response and intracellular bacterial infections. Front Cell Infect Microbiol. 2023;13:456.

    Google Scholar 

  6. Warwick T, Brandes RP, Leisegang MS. Computational methods to study DNA: DNA: RNA triplex formation by lncRNAs. Non-Coding RNA. 2023;9(1):10.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Aprile M, et al. Emerging role of oncogenic long noncoding RNA as cancer biomarkers. Int J Cancer. 2023;152(5):822–34.

    CAS  PubMed  Google Scholar 

  8. Zhang W, et al. Oncogenic LINC00857 recruits TFAP2C to elevate FAT1 expression in gastric cancer. Cancer Sci. 2023;114(1):63–74.

    CAS  PubMed  Google Scholar 

  9. Shen Q, et al. HSF1 stimulates glutamine transport by super-enhancer-driven lncRNA LINC00857 in colorectal cancer. Cancers. 2022;14(16):3855.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Su W, et al. LINC00857 interacting with YBX1 to regulate apoptosis and autophagy via MET and phosphor-AMPKa signaling. Mol Ther Nucleic Acids. 2020;22:1164–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chang N, et al. Long noncoding RNA LINC00857 promotes proliferation, migration, and invasion of colorectal cancer cell through miR-1306/vimentin Axis. Comput Math Methods Med. 2021;2021:1.

    Google Scholar 

  12. Pang K, et al. Long non-coding RNA LINC00857 promotes gastric cancer cell proliferation and predicts poor patient survival. Oncol Lett. 2018;16(2):2119–24.

    PubMed  PubMed Central  Google Scholar 

  13. Lin X, et al. LncRNA LINC00857 regulates the progression and glycolysis in ovarian cancer by modulating the Hippo signaling pathway. Cancer Med. 2020;9(21):8122–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang W, et al. Mutant p53 driven-LINC00857, a protein scaffold between FOXM1 and deubiquitinase OTUB1, promotes the metastasis of pancreatic cancer. Cancer Lett. 2023;552: 215976.

    CAS  PubMed  Google Scholar 

  15. Meng X, et al. m6A-mediated upregulation of LINC00857 promotes pancreatic cancer tumorigenesis by regulating the miR-150-5p/E2F3 axis. Front Oncol. 2021;11: 629947.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Roh J, et al. The Involvement of long non-coding RNAs in glutamine-metabolic reprogramming and therapeutic resistance in cancer. Int J Mol Sci. 2022;23(23):14808.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang X, et al. The role of long noncoding RNA in major human disease. Bioorg Chem. 2019;92: 103214.

    CAS  PubMed  Google Scholar 

  18. Gourvest M, Brousset P, Bousquet M. Long noncoding RNAs in acute myeloid leukemia: functional characterization and clinical relevance. Cancers. 2019;11(11):1638.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu H, Yang L, Chen L-L. The diversity of long noncoding RNAs and their generation. Trends Genet. 2017;33(8):540–52.

    CAS  PubMed  Google Scholar 

  20. Alessio E, et al. A single cell but many different transcripts: a journey into the world of long non-coding RNAs. Int J Mol Sci. 2020;21(1):302.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47–62.

    CAS  PubMed  Google Scholar 

  22. Zhu X, et al. DNMT1 facilitates growth of breast cancer by inducing MEG3 hyper-methylation. Cancer Cell Int. 2022;22(1):56.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Z-W, et al. SRSF3-mediated regulation of N6-methyladenosine modification-related lncRNA ANRIL splicing promotes resistance of pancreatic cancer to gemcitabine. Cell Rep. 2022;39(6): 110813.

    CAS  PubMed  Google Scholar 

  24. Tam C, et al. LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: updates in recent years. Appl Microbiol Biotechnol. 2019;103:4649–77.

    CAS  PubMed  Google Scholar 

  25. Nadhan R, et al. Signaling by LncRNAs: structure, cellular homeostasis, and disease pathology. Cells. 2022;11(16):2517.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pierattini, B. SINEUP lncRNAs: from molecular mechanism to therapeutic application. 2022.

  27. Xia A, et al. The cancer-testis lncRNA lnc-CTHCC promotes hepatocellular carcinogenesis by binding hnRNP K and activating YAP1 transcription. Nat Cancer. 2022;3(2):203–18.

    CAS  PubMed  Google Scholar 

  28. Zhang Y, et al. LncRNA SNHG15 acts as an oncogene in prostate cancer by regulating miR-338-3p/FKBP1A axis. Gene. 2019;705:44–50.

    CAS  PubMed  Google Scholar 

  29. Xin R, et al. Oncogenic lncRNA MALAT-1 recruits E2F1 to upregulate RAD51 expression and thus promotes cell autophagy and tumor growth in non-small cell lung cancer. Pulm Pharmacol Ther. 2023. https://doi.org/10.1016/j.pupt.2023.102199.

    Article  PubMed  Google Scholar 

  30. Zhao Z, et al. The long non-coding RNA keratin-7 antisense acts as a new tumor suppressor to inhibit tumorigenesis and enhance apoptosis in lung and breast cancers. Cell Death Dis. 2023;14(4):293.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang R, et al. lncRNA TUSC7 sponges miR-10a-5p and inhibits BDNF/ERK pathway to suppress glioma cell proliferation and migration. Aging. 2023. https://doi.org/10.18632/aging.204655.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jiang T, et al. Targeting lncRNA DDIT4-AS1 sensitizes triple negative breast cancer to chemotherapy via suppressing of autophagy. Adv Sci. 2023. https://doi.org/10.1002/advs.202207257.

    Article  Google Scholar 

  33. Li W, Hong G, Lai X. INKA2-AS1 Is a potential promising prognostic-related biomarker and correlated with immune infiltrates in hepatocellular carcinoma. Mediat Inflamm. 2023;2023:7057236. https://doi.org/10.1155/2023/7057236.

    Article  CAS  Google Scholar 

  34. Konani M, et al. LncRNA GHET1 and LncRNA ZXF2 as new biomarkers in oral squamous cell carcinoma in relation to clinicopathological variables. Int J Cancer Manag. 2023. https://doi.org/10.5812/ijcm-121372.

    Article  Google Scholar 

  35. Tang S, Liu Q, Xu M. LINC00857 promotes cell proliferation and migration in colorectal cancer by interacting with YTHDC1 and stabilizing SLC7A5. Oncol Lett. 2021;22(2):1–10.

    Google Scholar 

  36. Zhou D, et al. LINC00857 promotes colorectal cancer progression by sponging miR-150-5p and upregulating HMGB3 (high mobility group box 3) expression. Bioengineered. 2021;12(2):12107–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen P, et al. Long noncoding RNA LINC00857 promotes pancreatic cancer proliferation and metastasis by regulating the miR-130b/RHOA axis. Cell Death Discov. 2022;8(1):198.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Song Y, et al. LINC00857 promotes the proliferation of pancreatic cancer via MET, STAT3, and CREB. J Gastrointest Oncol. 2021;12(6):2622.

    PubMed  PubMed Central  Google Scholar 

  39. Han J, et al. EGR1 promoted anticancer effects of Scutellarin via regulating LINC00857/miR-150-5p/c-Myc in osteosarcoma. J Cell Mol Med. 2021;25(17):8479–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang Y, et al. LINC00857 contributes to proliferation and lymphomagenesis by regulating miR-370-3p/CBX3 axis in diffuse large B-cell lymphoma. Carcinogenesis. 2021;42(5):733–41.

    CAS  PubMed  Google Scholar 

  41. Su W, et al. LINC00857 knockdown inhibits cell proliferation and induces apoptosis via involving STAT3 and MET oncogenic proteins in esophageal adenocarcinoma. Aging (Albany NY). 2019;11(9):2812.

    CAS  PubMed  Google Scholar 

  42. Ren X, et al. Exploring the oncogenic roles of LINC00857 in pan-cancer. Novel Biomark Anticancer Ther. 2023;16648714:250.

    Google Scholar 

  43. Lin X, et al. Regulation of transcription factor YAP-TEAD by non-coding RNA LINC00857 and the inhibitory effects on ovarian cancer cell proliferation. Cell Mol Biol (Noisy-le-grand). 2022;68(2):162–70.

    PubMed  Google Scholar 

  44. Wang L, et al. Non-coding RNA LINC00857 is predictive of poor patient survival and promotes tumor progression via cell cycle regulation in lung cancer. Oncotarget. 2016;7(10):11487.

    PubMed  PubMed Central  Google Scholar 

  45. Xia C, et al. LINC00857 contributes to hepatocellular carcinoma malignancy via enhancing epithelial-mesenchymal transition. J Cell Biochem. 2019;120(5):7970–7.

    CAS  PubMed  Google Scholar 

  46. Dudek AM, et al. LINC 00857 expression predicts and mediates the response to platinum-based chemotherapy in muscle-invasive bladder cancer. Cancer Med. 2018;7(7):3342–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang L, et al. LncRNA LINC00857 regulates lung adenocarcinoma progression, apoptosis and glycolysis by targeting miR-1179/SPAG5 axis. Hum Cell. 2020;33:195–204.

    CAS  PubMed  Google Scholar 

  48. Kanth P, Inadomi JM. Screening and prevention of colorectal cancer. BMJ. 2021. https://doi.org/10.1136/bmj.n1855.

    Article  PubMed  Google Scholar 

  49. Li C, et al. Integrated omics of metastatic colorectal cancer. Cancer Cell. 2020;38(5):734-747.e9.

    CAS  PubMed  Google Scholar 

  50. Yin D-D, et al. Decreased expression of long noncoding RNA MEG3 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Tumor Biol. 2015;36:4851–9.

    CAS  Google Scholar 

  51. Shi Y, et al. Downregulated long noncoding RNA BANCR promotes the proliferation of colorectal cancer cells via downregualtion of p21 expression. PLoS One. 2015;10(4): e0122679.

    PubMed  PubMed Central  Google Scholar 

  52. Lian Y, et al. Long non-coding RNA IRAIN suppresses apoptosis and promotes proliferation by binding to LSD1 and EZH2 in pancreatic cancer. Tumor Biol. 2016;37:14929–37.

    CAS  Google Scholar 

  53. Attard G, de Bono JS, et al. Prostate cancer. Lancet. 2016;387(10013):70–82.

    PubMed  Google Scholar 

  54. Cuzick J, et al. Prevention and early detection of prostate cancer. Lancet Oncol. 2014;15(11):e484–92.

    PubMed  PubMed Central  Google Scholar 

  55. Bray F, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. 2018;68(6):394–424.

    PubMed  Google Scholar 

  56. Li F, Mahato RI. MicroRNAs and drug resistance in prostate cancers. Mol Pharm. 2014;11(8):2539–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Armstrong CM, et al. MicroRNA-181a promotes docetaxel resistance in prostate cancer cells. Prostate. 2017;77(9):1020–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fitzmaurice C, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 2017;3(4):524–48.

    PubMed  Google Scholar 

  59. Thrift AP, El-Serag HB. Burden of gastric cancer. Clin Gastroenterol Hepatol. 2020;18(3):534–42.

    PubMed  Google Scholar 

  60. Shapira I, et al. Circulating biomarkers for detection of ovarian cancer and predicting cancer outcomes. Br J Cancer. 2014;110(4):976–83.

    CAS  PubMed  Google Scholar 

  61. Rustin GJ, et al. Early versus delayed treatment of relapsed ovarian cancer (MRC OV05/EORTC 55955): a randomised trial. Lancet. 2010;376(9747):1155–63.

    PubMed  Google Scholar 

  62. Li H, et al. SUZ12 promotes human epithelial ovarian cancer by suppressing apoptosis via silencing HRKSUZ12 promotes EOC via silencing HRK. Mol Cancer Res. 2012;10(11):1462–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ebell MH, Culp MB, Radke TJ. A systematic review of symptoms for the diagnosis of ovarian cancer. Am J Prev Med. 2016;50(3):384–94.

    PubMed  Google Scholar 

  64. Narod S. Can advanced-stage ovarian cancer be cured? Nat Rev Clin Oncol. 2016;13(4):255–61.

    CAS  PubMed  Google Scholar 

  65. Gupta V, Yull F, Khabele D. Bipolar tumor-associated macrophages in ovarian cancer as targets for therapy. Cancers. 2018;10(10):366.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ziętek A, et al. Opportunistic salpingectomy for prevention of sporadic ovarian cancer—a jump from basic science to clinical practice? Ginekol Pol. 2016;87(6):467–72.

    PubMed  Google Scholar 

  67. Isakoff MS, et al. Osteosarcoma: current treatment and a collaborative pathway to success. J Clin Oncol. 2015;33(27):3029.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang C-L, Zhu K-P, Ma X-L. Antisense lncRNA FOXC2-AS1 promotes doxorubicin resistance in osteosarcoma by increasing the expression of FOXC2. Cancer Lett. 2017;396:66–75.

    CAS  PubMed  Google Scholar 

  69. Flynn RA, Chang HY. Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell. 2014;14(6):752–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Fan J, et al. Global trends in the incidence and mortality of esophageal cancer from 1990 to 2017. Cancer Med. 2020;9(18):6875–87.

    PubMed  Google Scholar 

  71. Ohashi S, et al. Recent advances from basic and clinical studies of esophageal squamous cell carcinoma. Gastroenterology. 2015;149(7):1700–15.

    PubMed  Google Scholar 

  72. Khazaei Z, et al. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide prostate cancers and their relationship with the human development index. Adv Hum Biol. 2019;9(3):245.

    Google Scholar 

  73. Forner A, Reig M. carcinoma Bruix JHepatocellular. Lancet. 2018;391(10127):1301–14.

    PubMed  Google Scholar 

  74. Liang Q, Shen X, Sun G. Precision medicine: update on diagnosis and therapeutic strategies of hepatocellular carcinoma. Curr Med Chem. 2018;25(17):1999–2008.

    CAS  PubMed  Google Scholar 

  75. Attwa MH, El-Etreby SA. Guide for diagnosis and treatment of hepatocellular carcinoma. World J Hepatol. 2015;7(12):1632.

    PubMed  PubMed Central  Google Scholar 

  76. Sung H, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. 2021;71(3):209–49.

    PubMed  Google Scholar 

  77. Patel VG, Oh WK, Galsky MD. Treatment of muscle-invasive and advanced bladder cancer in. CA. 2020;70(5):404–23.

    PubMed  Google Scholar 

  78. de Jong JJ, et al. Non-muscle-invasive micropapillary bladder cancer has a distinct lncRNA profile associated with unfavorable prognosis. Br J Cancer. 2022;127(2):313–20.

    PubMed  PubMed Central  Google Scholar 

  79. Li Y, et al. Non-coding RNA in bladder cancer. Cancer Lett. 2020;485:38–44.

    CAS  PubMed  Google Scholar 

  80. Luo J, et al. LncRNAs: Architectural scaffolds or more potential roles in phase separation. Front Genet. 2021;12: 626234.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang Z, et al. LncRNA: shedding light on mechanisms and opportunities in fibrosis and aging. Ageing Res Rev. 2019;52:17–31.

    CAS  PubMed  Google Scholar 

  82. Liu B, et al. The regulatory role of antisense lncRNAs in cancer. Cancer Cell Int. 2021;21(1):1–15.

    CAS  Google Scholar 

  83. Bagchi, A. Molecular analysis of the involvements of lncRNA in cancer development. In: Handbook of oxidative stress in cancer: mechanistic aspects. 2020. p. 1–14.

  84. Begolli R, Sideris N, Giakountis A. LncRNAs as chromatin regulators in cancer: from molecular function to clinical potential. Cancers. 2019;11(10):1524.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. He R-Z, Luo D-X, Mo Y-Y. Emerging roles of lncRNAs in the post-transcriptional regulation in cancer. Genes Dis. 2019;6(1):6–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Dalmartello M, et al. European cancer mortality predictions for the year 2022 with focus on ovarian cancer. Ann Oncol. 2022;33(3):330–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Princess Nourah Bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R259), Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

RMR-P and SRH-F: supervision, conceptualization; AH, SS, JG, HOA, YHM, AAAa: data collection, writing the original draft; RFO, BMH: editing; SS: funding acquisition.

Corresponding author

Correspondence to Rosario Mireya Romero-Parra.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldayyeni, H., Hjazi, A., Shahab, S. et al. Functions, mechanisms, and clinical applications of lncRNA LINC00857 in cancer pathogenesis. Human Cell 36, 1656–1671 (2023). https://doi.org/10.1007/s13577-023-00936-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00936-0

Keywords

Navigation