Skip to main content

Advertisement

Log in

Advances in mesenchymal stem/stromal cell-based therapy and their extracellular vesicles for skin wound healing

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Wound healing is a dynamic and complicated process containing overlapping phases. Presently, definitive therapy is not available, and the investigation into optimal wound care is influenced by the efficacy and cost-effectiveness of developing therapies. Accumulating evidence demonstrated the potential role of mesenchymal stem/stromal cell (MSC) therapy in several tissue injuries and diseases due to their high proliferation and differentiation abilities along with an easy collection procedure, low tumorigenesis, and immuno‐privileged status. MSCs have also accelerated wound repair in all phases through their advantageous properties, such as accelerating wound closure, improving re-epithelialization, elevating angiogenesis, suppressing inflammation, and modulating extracellular matrix (ECM) remodeling. In addition, the beneficial therapeutic impacts of MSCs are largely associated with their paracrine functions, including extracellular vesicles (EVs). Exosomes and microvesicles are the two main subgroups of EVs. These vesicles are heterogeneous bilayer membrane structures that contain several proteins, lipids, and nucleic acids. EVs have emerged as a promising alternative to stem cell-based therapies because of their lower immunogenicity, tumorigenicity, and ease of management. MSCs from various sources have been widely investigated in skin wound healing and regeneration. Considering these features, in this review, we highlighted recent studies that the investigated therapeutic potential of various MSCs and MSC-EVs in skin damages and wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Zhang M, et al. Ag@MOF-loaded chitosan nanoparticle and polyvinyl alcohol/sodium alginate/chitosan bilayer dressing for wound healing applications. Int J Biol Macromol. 2021;175:481–94.

    Article  CAS  PubMed  Google Scholar 

  2. Mirhaj M, et al. Emerging treatment strategies in wound care. Int Wound J. 2022;19:1934.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vierkötter A, Krutmann J. Environmental influences on skin aging and ethnic-specific manifestations. Dermatoendocrinol. 2012;4(3):227–31.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Parrado C, et al. Environmental stressors on skin aging. Mechanistic insights. Front Pharmacol. 2019;10:759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jo H, et al. Applications of mesenchymal stem cells in skin regeneration and rejuvenation. Int J Mol Sci. 2021;22(5):2410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shpichka A, et al. Skin tissue regeneration for burn injury. Stem Cell Res Ther. 2019;10(1):94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sgonc R, Gruber J. Age-related aspects of cutaneous wound healing: a mini-review. Gerontology. 2013;59(2):159–64.

    Article  PubMed  Google Scholar 

  8. Narauskaitė D, et al. Extracellular vesicles in skin wound healing. Pharmaceuticals (Basel). 2021;14(8):811.

    Article  PubMed  Google Scholar 

  9. Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle). 2015;4(9):560–82.

    Article  PubMed  Google Scholar 

  10. Hoang DM, et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther. 2022;7(1):272.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rungsiwiwut R, et al. Characterization of stem cells from human ovarian follicular fluid; a potential source of autologous stem cell for cell-based therapy. Hum Cell. 2021;34(2):300–9.

    Article  CAS  PubMed  Google Scholar 

  12. Viswanathan S, et al. Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy. 2019;21(10):1019–24.

    Article  CAS  PubMed  Google Scholar 

  13. Nourian Dehkordi A, et al. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther. 2019;10(1):111.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Abbaszadeh H, et al. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles: a novel therapeutic paradigm. J Cell Physiol. 2020;235(2):706–17.

    Article  CAS  PubMed  Google Scholar 

  15. Marino L, et al. Mesenchymal stem cells from the wharton’s jelly of the human umbilical cord: biological properties and therapeutic potential. Int J Stem Cells. 2019;12(2):218–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kangari P, et al. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther. 2020;11(1):492.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Guillamat-Prats R. The role of MSC in wound healing, scarring and regeneration. Cells. 2021;10(7):1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang M, et al. Mesenchymal stem cell-based therapy for burn wound healing. Burns & Trauma. 2021;9:tkab002.

    Article  Google Scholar 

  19. Abbaszadeh H, et al. Chronic obstructive pulmonary disease and asthma: mesenchymal stem cells and their extracellular vesicles as potential therapeutic tools. Stem Cell Res Ther. 2022;13(1):262.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chung IM, et al. Exosomes: current use and future applications. Clin Chim Acta. 2020;500:226–32.

    Article  CAS  PubMed  Google Scholar 

  21. Kwok ZH, Wang C, Jin Y. Extracellular vesicle transportation and uptake by recipient cells: a critical process to regulate human diseases. Processes. 2021. https://doi.org/10.3390/pr9020273.

    Article  PubMed  Google Scholar 

  22. Pittenger MF, et al. Mesenchymal stem cell perspective: cell biology to clinical progress. npj Regen Med. 2019;4(1):22.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ghorbani F, et al. Renoprotective effects of extracellular vesicles: a systematic review. Gene Reports. 2022;26: 101491.

    Article  CAS  Google Scholar 

  24. Wu X, et al. Mesenchymal stromal cell therapies: immunomodulatory properties and clinical progress. Stem Cell Res Ther. 2020;11(1):345.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Murray IR, Péault B. Q&A: mesenchymal stem cells—where do they come from and is it important? BMC Biol. 2015;13(1):99.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schneider S, et al. Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine. Eur J Med Res. 2017;22(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Greening DW, et al. Exosomes and their roles in immune regulation and cancer. Semin Cell Dev Biol. 2015;40:72–81.

    Article  CAS  PubMed  Google Scholar 

  28. Taylor DA, et al. Recommendations for nomenclature and definition of cell products intended for human cardiovascular use. Cardiovasc Res. 2022;118(11):2428–36.

    Article  CAS  PubMed  Google Scholar 

  29. Qian L, et al. Adipose mesenchymal stem cell-derived exosomes accelerate skin wound healing via the lncRNA H19/miR-19b/SOX9 axis. Lab Invest. 2021;101(9):1254–66.

    Article  CAS  PubMed  Google Scholar 

  30. Rezabakhsh A, Sokullu E, Rahbarghazi R. Applications, challenges and prospects of mesenchymal stem cell exosomes in regenerative medicine. Stem Cell Res Ther. 2021;12(1):521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yin K, Wang S, Zhao RC. Exosomes from mesenchymal stem/stromal cells: a new therapeutic paradigm. Biomarker Research. 2019;7(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Harrell CR, et al. Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases. Cells. 2019;8(12):1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Borges FT, Reis LA, Schor N. Extracellular vesicles: structure, function, and potential clinical uses in renal diseases. Braz J Med Biol Res. 2013;46(10):824–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee Y, El Andaloussi S, Wood MJA. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012;21(R1):R125–34.

    Article  CAS  PubMed  Google Scholar 

  36. Turturici G, et al. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Physiol. 2014;306(7):C621–33.

    Article  CAS  PubMed  Google Scholar 

  37. Zhu W, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett. 2012;315(1):28–37.

    Article  CAS  PubMed  Google Scholar 

  38. Kim JY, et al. Comparative analysis of MSC-derived exosomes depending on cell culture media for regenerative bioactivity. Tissue Eng Regen Med. 2021;18(3):355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nikolits I, et al. Towards physiologic culture approaches to improve standard cultivation of mesenchymal stem cells. Cells. 2021;10(4):886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ben Azouna N, et al. Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow: comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum. Stem Cell Res Ther. 2012;3(1):6.

    Article  CAS  PubMed  Google Scholar 

  41. Kojima Y, et al. Mesenchymal stem cells cultured under hypoxic conditions had a greater therapeutic effect on mice with liver cirrhosis compared to those cultured under normal oxygen conditions. Regen Ther. 2019;11:269–81.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Almeria C, et al. Heterogeneity of mesenchymal stem cell-derived extracellular vesicles is highly impacted by the tissue/cell source and culture conditions. Cell Biosci. 2022;12(1):51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rani S, et al. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther. 2015;23(5):812–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maumus M et al (2020) Mesenchymal stem cell-derived extracellular vesicles: opportunities and challenges for clinical translation. 8

  45. Qiu G, et al. Functional proteins of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther. 2019;10(1):359.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sanmartin MC, et al. Mesenchymal stromal cell-derived extracellular vesicles as biological carriers for drug delivery in cancer therapy. Front Bioeng Biotechnol. 2022;10: 882545.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sanz-Ros J, et al. Extracellular vesicles as therapeutic resources in the clinical environment. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24032344.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang N et al (2022) Emerging roles of mesenchymal stem cell-derived exosomes in gastrointestinal cancers. 10

  49. Witwer KW, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2:20360.

    Article  Google Scholar 

  50. Ramírez-Bajo MJ, et al. Isolation of extracellular vesicles derived from mesenchymal stromal cells by ultracentrifugation. Bio Protoc. 2020;10(24): e3860.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jung J-H, et al. Dual size-exclusion chromatography for efficient isolation of extracellular vesicles from bone marrow derived human plasma. Sci Rep. 2021;11(1):217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Konoshenko MY, et al. Isolation of extracellular vesicles: general methodologies and latest trends. Biomed Res Int. 2018;2018:8545347.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yang J, et al. An isolation system to collect high quality and purity extracellular vesicles from serum. Int J Nanomedicine. 2021;16:6681–92.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sun Y, et al. Mesenchymal stem cells-derived exosomes for drug delivery. Stem Cell Res Ther. 2021;12(1):561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li Z, et al. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring. Mater Sci Eng, C. 2015;57:181–8.

    Article  CAS  Google Scholar 

  56. Chen L, et al. Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice. PLoS ONE. 2014;9(4): e96161.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Payushina OV, et al. Effect of mesenchymal stromal cells and conditioned media on healing of skin wound. Bull Exp Biol Med. 2018;165(4):572–5.

    Article  CAS  PubMed  Google Scholar 

  58. Paramasivam T, et al. Effect of PDGF-B gene-activated acellular matrix and mesenchymal stem cell transplantation on full thickness skin burn wound in rat model. Tissue Eng Regen Med. 2021;18(2):235–51.

    Article  CAS  PubMed  Google Scholar 

  59. Cui HS, et al. Effect of combining low temperature plasma, negative pressure wound therapy, and bone marrow mesenchymal stem cells on an acute skin wound healing mouse model. Int J Mol Sci. 2020;21(10):3675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xu H, Zhang H, Ding Y. Platelet-derived growth factor and stromal cell-derived factor-1 promote the skin wound repairing effect of bone mesenchymal stem cells: a key role of matrix metalloproteinase 1 and collagens. Int J Clin Exp Pathol. 2017;10(8):8253–62.

    PubMed  PubMed Central  Google Scholar 

  61. Xia Y, et al. IGF1- and BM-MSC-incorporating collagen-chitosan scaffolds promote wound healing and hair follicle regeneration. Am J Transl Res. 2020;12(10):6264–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Qi Y, et al. TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. J Invest Dermatol. 2014;134(2):526–37.

    Article  CAS  PubMed  Google Scholar 

  63. Maharlooei MK, et al. Adipose tissue derived mesenchymal stem cell (AD-MSC) promotes skin wound healing in diabetic rats. Diabetes Res Clin Pract. 2011;93(2):228–34.

    Article  PubMed  Google Scholar 

  64. Heo SC, et al. Tumor necrosis factor-α-activated human adipose tissue-derived mesenchymal stem cells accelerate cutaneous wound healing through paracrine mechanisms. J Investig Dermatol. 2011;131(7):1559–67.

    Article  CAS  PubMed  Google Scholar 

  65. Rubio GA, et al. Mesenchymal stromal cells prevent bleomycin-induced lung and skin fibrosis in aged mice and restore wound healing. J Cell Physiol. 2018;233(8):5503–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim N, et al. Therapeutic effects of platelet derived growth factor overexpressed-mesenchymal stromal cells and sheets in canine skin wound healing model. Histol Histopathol. 2020;35(7):751–67.

    CAS  PubMed  Google Scholar 

  67. Zomer HD, et al. Mesenchymal stromal cells from dermal and adipose tissues induce macrophage polarization to a pro-repair phenotype and improve skin wound healing. Cytotherapy. 2020;22(5):247–60.

    Article  CAS  PubMed  Google Scholar 

  68. Zomer HD, et al. In vitro comparative study of human mesenchymal stromal cells from dermis and adipose tissue for application in skin wound healing. J Tissue Eng Regen Med. 2019;13(5):729–41.

    Article  CAS  PubMed  Google Scholar 

  69. van den Broek LJ, et al. Differential response of human adipose tissue-derived mesenchymal stem cells, dermal fibroblasts, and keratinocytes to burn wound exudates: potential role of skin-specific chemokine CCL27. Tissue Eng Part A. 2014;20(1–2):197–209.

    Article  PubMed  Google Scholar 

  70. Ma H, et al. Adipose tissue-derived mesenchymal stem cells (ADMSCs) and ADMSC-derived secretome expedited wound healing in a rodent model—a preliminary study. Clin Cosmet Investig Dermatol. 2021;14:753–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lotfi M, et al. Adipose tissue-derived mesenchymal stem cells and keratinocytes co-culture on gelatin/chitosan/β-glycerol phosphate nanoscaffold in skin regeneration. Cell Biol Int. 2019;43:1365.

    Article  CAS  PubMed  Google Scholar 

  72. Liu C, et al. Mesenchymal stem cells pretreated with proinflammatory cytokines accelerate skin wound healing by promoting macrophages migration and M2 polarization. Regen Ther. 2022;21:192–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhu M, et al. Mesenchymal stromal cells pretreated with pro-inflammatory cytokines promote skin wound healing through VEGFC-mediated angiogenesis. Stem Cells Transl Med. 2020;9(10):1218–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xue J, Sun N, Liu Y. Self-assembled nano-peptide hydrogels with human umbilical cord mesenchymal stem cell spheroids accelerate diabetic skin wound healing by inhibiting inflammation and promoting angiogenesis. Int J Nanomed. 2022;17:2459–74.

    Article  Google Scholar 

  75. Wang S, et al. Wound dressing model of human umbilical cord mesenchymal stem cells-alginates complex promotes skin wound healing by paracrine signaling. Stem Cells Int. 2016;2016:3269267.

    Article  PubMed  Google Scholar 

  76. Liu L, et al. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats. PLoS ONE. 2014;9(2): e88348.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhao L, et al. Combined transplantation of mesenchymal stem cells and endothelial colony-forming cells accelerates refractory diabetic foot ulcer healing. Stem Cells Int. 2020;2020:8863649.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Luo G, et al. Promotion of cutaneous wound healing by local application of mesenchymal stem cells derived from human umbilical cord blood. Wound Repair Regen. 2010;18(5):506–13.

    Article  PubMed  Google Scholar 

  79. Zhang Z, et al. Sodium alginate/collagen hydrogel loaded with human umbilical cord mesenchymal stem cells promotes wound healing and skin remodeling. Cell Tissue Res. 2021;383(2):809–21.

    Article  CAS  PubMed  Google Scholar 

  80. Jeon YK, et al. Mesenchymal stem cells’ interaction with skin: wound-healing effect on fibroblast cells and skin tissue. Wound Repair Regen. 2010;18(6):655–61.

    Article  PubMed  Google Scholar 

  81. Kim Y-J, et al. Conditioned media from human umbilical cord blood-derived mesenchymal stem cells stimulate rejuvenation function in human skin. Biochem Biophys Rep. 2018;16:96–102.

    PubMed  PubMed Central  Google Scholar 

  82. Moon K-C, et al. Effects of human umbilical cord blood–derived mesenchymal stromal cells and dermal fibroblasts on diabetic wound healing. Cytotherapy. 2017;19(7):821–8.

    Article  CAS  PubMed  Google Scholar 

  83. You H-J, et al. Wound-healing potential of human umbilical cord blood–derived mesenchymal stromal cells in vitro—a pilot study. Cytotherapy. 2015;17(11):1506–13.

    Article  CAS  PubMed  Google Scholar 

  84. Jung J-A, et al. Comparison of human umbilical cord blood-derived mesenchymal stem cells with healthy fibroblasts on wound-healing activity of diabetic fibroblasts. Int Wound J. 2018;15(1):133–9.

    Article  PubMed  Google Scholar 

  85. Lee C, et al. Human umbilical cord blood–derived mesenchymal stromal cells and small intestinal submucosa hydrogel composite promotes combined radiation-wound healing of mice. Cytotherapy. 2017;19(9):1048–59.

    Article  CAS  PubMed  Google Scholar 

  86. Mund SJK, Kawamura E, Awang-Junaidi AH, Campbell J, Wobeser B, MacPhee DJ, Honaramooz A, Barber S. Engraftment of intravenously administered equine cord blood-derived multipotent mesenchymal stromal cells to surgically created cutaneous wound in horses: a pilot project. Cells. 2020. https://doi.org/10.3390/cells9051162.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mund SJK, MacPhee DJ, Campbell J, Honaramooz A, Wobeser B, Barber SM. Immunomodulatory response of limb wounds following intravenous allogeneic cord blood-derived multipotent mesenchymal stromal cell therapy in horses. Cells. 2021. https://doi.org/10.3390/cells10112972.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hashemi SS, et al. Effect of dermal fibroblasts and mesenchymal stem cells seeded on an amniotic membrane scaffold in skin regeneration: a case series. J Cosmet Dermatol. 2021;20(12):4040–7.

    Article  PubMed  Google Scholar 

  89. Li JY, et al. Human amniotic mesenchymal stem cells and their paracrine factors promote wound healing by inhibiting heat stress-induced skin cell apoptosis and enhancing their proliferation through activating PI3K/AKT signaling pathway. Stem Cell Res Ther. 2019;10(1):247.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jun EK, et al. Hypoxic conditioned medium from human amniotic fluid-derived mesenchymal stem cells accelerates skin wound healing through TGF-β/SMAD2 and PI3K/Akt pathways. Int J Mol Sci. 2014;15(1):605–28.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Yoon BS, et al. Secretory profiles and wound healing effects of human amniotic fluid-derived mesenchymal stem cells. Stem Cells Dev. 2009;19(6):887–902.

    Article  Google Scholar 

  92. He D, et al. LOXL2 from human amniotic mesenchymal stem cells accelerates wound epithelialization by promoting differentiation and migration of keratinocytes. Aging. 2020;12:12960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Martinello T, et al. Allogeneic mesenchymal stem cells improve the wound healing process of sheep skin. BMC Vet Res. 2018;14(1):202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Melotti L, et al. Could cold plasma act synergistically with allogeneic mesenchymal stem cells to improve wound skin regeneration in a large size animal model? Res Vet Sci. 2021;136:97–110.

    Article  CAS  PubMed  Google Scholar 

  95. Di Francesco P, et al. Effect of allogeneic oral mucosa mesenchymal stromal cells on equine wound repair. Vet Med Int. 2021;2021:5024905.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Magne B, et al. IL-1β-primed mesenchymal stromal cells improve epidermal substitute engraftment and wound healing via matrix metalloproteinases and transforming growth factor-β1. J Invest Dermatol. 2020;140(3):688-698.e21.

    Article  CAS  PubMed  Google Scholar 

  97. Zhou L, et al. Efficacy of human adipose derived mesenchymal stem cells in promoting skin wound healing. J Healthc Eng. 2022;2022:6590025.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Dar ER, et al. Cryopreserved allogeneic mesenchymal stem cells enhance wound repair in full thickness skin wound model and cattle clinical teat injuries. Curr Res Transl Med. 2022;70(4): 103356.

    Article  CAS  PubMed  Google Scholar 

  99. Kerstan A, et al. Translational development of ABCB5(+) dermal mesenchymal stem cells for therapeutic induction of angiogenesis in non-healing diabetic foot ulcers. Stem Cell Res Ther. 2022;13(1):455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Drela K, et al. Experimental strategies of mesenchymal stem cell propagation: adverse events and potential risk of functional changes. Stem Cells Int. 2019;2019:7012692.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Goradel HN, Jahangiri S, Negahdari B. Effects of mesenchymal stem cell-derived exosomes on angiogenesis in regenerative medicine. Curr Regen Med (Discontinued). 2017;7(1):46–53.

    Article  CAS  Google Scholar 

  102. Yang G, et al. Correction to: mesenchymal stem cells-derived exosomes modulate vascular endothelial injury via miR-144-5p/PTEN in intracranial aneurysm. Hum Cell. 2021;34(6):1945–1945.

    Article  PubMed  Google Scholar 

  103. Montis C, et al. Biogenic supported lipid bilayers as a tool to investigate nano-bio interfaces. J Colloid Interface Sci. 2020;570:340–9.

    Article  CAS  PubMed  Google Scholar 

  104. LeClaire M, Gimzewski J, Sharma S. A review of the biomechanical properties of single extracellular vesicles. Nano Select. 2021;2(1):1–15.

    Article  CAS  Google Scholar 

  105. Taheri B, et al. Induced pluripotent stem cell-derived extracellular vesicles: a novel approach for cell-free regenerative medicine. J Cell Physiol. 2019;234(6):8455–64.

    Article  CAS  PubMed  Google Scholar 

  106. Qiu X, et al. Exosomes released from educated mesenchymal stem cells accelerate cutaneous wound healing via promoting angiogenesis. Cell Prolif. 2020;53(8): e12830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Abolgheit S, et al. Bone marrow-derived mesenchymal stem cells and extracellular vesicles enriched collagen chitosan scaffold in skin wound healing (a rat model). J Biomater Appl. 2021;36(1):128–39.

    Article  CAS  PubMed  Google Scholar 

  108. Tutuianu R, et al. Human mesenchymal stromal cell-derived exosomes promote in vitro wound healing by modulating the biological properties of skin keratinocytes and fibroblasts and stimulating angiogenesis. Int J Mol Sci. 2021;22(12):6239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pomatto M, et al. Differential therapeutic effect of extracellular vesicles derived by bone marrow and adipose mesenchymal stem cells on wound healing of diabetic ulcers and correlation to their cargoes. Int J Mol Sci. 2021;22(8):3851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ma T, et al. Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing. J Cell Biochem. 2019;120(6):10847–54.

    Article  CAS  PubMed  Google Scholar 

  111. Li J, et al. Apoptotic bodies extracted from adipose mesenchymal stem cells carry microRNA-21–5p to induce M2 polarization of macrophages and augment skin wound healing by targeting KLF6. Burns. 2022;48:1893.

    Article  PubMed  Google Scholar 

  112. Zhou Y, et al. Combined topical and systemic administration with human adipose-derived mesenchymal stem cells (hADSC) and hADSC-derived exosomes markedly promoted cutaneous wound healing and regeneration. Stem Cell Res Ther. 2021;12(1):257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yang J, et al. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. Int J Nanomedicine. 2020;15:5911–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang B, et al. HucMSC-exosome mediated-wnt4 signaling is required for cutaneous wound healing. Stem Cells. 2015;33(7):2158–68.

    Article  CAS  PubMed  Google Scholar 

  115. Liu J, et al. Exosomes derived from human umbilical cord mesenchymal stem cells accelerate cutaneous wound healing by enhancing angiogenesis through delivering angiopoietin-2. Stem Cell Reviews and Reports. 2021;17(2):305–17.

    Article  CAS  PubMed  Google Scholar 

  116. Zhang Y, et al. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulate regenerative wound healing via transforming growth factor-β receptor inhibition. Stem Cell Res Ther. 2021;12(1):434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gao S, et al. Exosomal miR-135a derived from human amnion mesenchymal stem cells promotes cutaneous wound healing in rats and fibroblast migration by directly inhibiting LATS2 expression. Stem Cell Res Ther. 2020;11(1):56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li B, et al. The MSC-derived exosomal lncRNA H19 promotes wound healing in diabetic foot ulcers by upregulating PTEN via MicroRNA-152-3p. Mol Ther Nucleic Acids. 2020;19:814–26.

    Article  CAS  PubMed  Google Scholar 

  119. Shi Q, et al. GMSC-derived exosomes combined with a chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model. Front Physiol. 2017;8:904.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Manzoor T, et al. Extracellular vesicles derived from mesenchymal stem cells—a novel therapeutic tool in infectious diseases. Inflamm Regener. 2023;43(1):17.

    Article  CAS  Google Scholar 

  121. Fuloria S, et al. Mesenchymal stem cell-derived extracellular vesicles: regenerative potential and challenges. Biology. 2021. https://doi.org/10.3390/biology10030172.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Zhao H, et al. Bioengineered MSC-derived exosomes in skin wound repair and regeneration. Front Cell Dev Biol. 2023;11:1029671.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Casado-Díaz A, Quesada-Gómez JM, Dorado G. Extracellular vesicles derived from mesenchymal stem cells (MSC) in regenerative medicine: applications in skin wound healing. Front Bioeng Biotechnol. 2020;8:146.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Dabrowska S, et al. Immunomodulatory and regenerative effects of mesenchymal stem cells and extracellular vesicles: therapeutic outlook for inflammatory and degenerative diseases. Front Immunol. 2020;11: 591065.

    Article  CAS  PubMed  Google Scholar 

  125. Lai P, et al. Novel insights into MSC-EVs therapy for immune diseases. Biomark Res. 2019;7:6.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Zhou Y, et al. Exosomes from endothelial progenitor cells improve the outcome of a murine model of sepsis. Mol Ther. 2018;26(5):1375–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang X, et al. Exosomes derived from adipose-derived stem cells overexpressing glyoxalase-1 protect endothelial cells and enhance angiogenesis in type 2 diabetic mice with limb ischemia. Stem Cell Res Ther. 2021;12(1):403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Sârbu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadh, M.J., Ramírez-Coronel, A.A., Saini, R.S. et al. Advances in mesenchymal stem/stromal cell-based therapy and their extracellular vesicles for skin wound healing. Human Cell 36, 1253–1264 (2023). https://doi.org/10.1007/s13577-023-00904-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00904-8

Keywords

Navigation