Skip to main content

Advertisement

Log in

Downregulation of argininosuccinate synthase 1 (ASS1) is associated with hypoxia in placental development

  • Short Communication
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Argininosuccinate synthase (ASS1) is involved in nitric oxide production, which has a key role in placental development improving pregnancy outcomes. Syncytiotrophoblast and extravillous trophoblast differentiations are milestones of placental development and their impairment can cause pathologies, such as preeclampsia (PE) and fetal growth restriction (FGR). Immunohistochemistry and Western blotting were used to localize and quantify ASS1 in first trimester (8.2 ± 1.8 weeks), third trimester (38.6 ± 1.1 weeks), and PE (36.3 ± 1.5 weeks) placentas. In addition, cell cultures were used to evaluate ASS1 expression under hypoxic conditions and the syncytialization process. Our data showed that ASS1 is localized in the villous cytotrophoblast of first trimester, third trimester, and PE placentas, while the villous cytotrophoblast adjacent to the extravillous trophoblast of cell columns as well as the extravillous trophoblast were negative for ASS1 in first trimester placentas. In addition, ASS1 was decreased in third trimester compared to the first trimester placentas (p = 0.003) and no differences were detected between third trimester and PE placentas. Moreover, ASS1 expression was decreased in hypoxic conditions and syncytialized cells compared to those not syncytialized. In conclusion, we suggest that the expression of ASS1 in villous cytotrophoblast is related to maintaining proliferative phenotype, while ASS1 absence may be involved in promoting the differentiation of villous cytotrophoblast in extravillous cytotrophoblast of cell columns in first trimester placentas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Availability of data and materials

The datasets used and/or analyzed in the current study are available from the corresponding author upon reasonable request.

References

  1. Husson A, Brasse-Lagnel C, Fairand A, Renouf S, Lavoinne A. Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycle. Eur J Biochem. 2003;270(9):1887–99.

    Article  CAS  PubMed  Google Scholar 

  2. Walker JB. Creatine: biosynthesis, regulation, and function. Adv Enzymol Relat Areas Mol Biol. 1979;50:177–242.

    CAS  PubMed  Google Scholar 

  3. Visek WJ. Arginine needs, physiological state and usual diets. A reevaluation. J Nutr. 1986;116(1):36–46.

    Article  CAS  PubMed  Google Scholar 

  4. Higashi Y, Oshima T, Ozono R, Matsuura H, Kambe M, Kajiyama G. Effect of L-arginine infusion on systemic and renal hemodynamics in hypertensive patients. Am J Hypertens. 1999;12(1 Pt 1):8–15.

    Article  CAS  PubMed  Google Scholar 

  5. Lewis B, Langkamp-Henken B. Arginine enhances In vivo immune responses in young, adult and aged mice. J Nutr. 2000;130(7):1827–30.

    Article  CAS  PubMed  Google Scholar 

  6. Mahdi A, Kovamees O, Pernow J. Improvement in endothelial function in cardiovascular disease—Is arginase the target? Int J Cardiol. 2020;301:207–14.

    Article  PubMed  Google Scholar 

  7. Ahn B, Ohshima H. Suppression of intestinal polyposis in Apc(Min/+) mice by inhibiting nitric oxide production. Cancer Res. 2001;61(23):8357–60.

    CAS  PubMed  Google Scholar 

  8. Feun LG, Kuo MT, Savaraj N. Arginine deprivation in cancer therapy. Curr Opin Clin Nutr Metab Care. 2015;18(1):78–82.

    Article  CAS  PubMed  Google Scholar 

  9. Feun L, You M, Wu CJ, Kuo MT, Wangpaichitr M, Spector S, Savaraj N. Arginine deprivation as a targeted therapy for cancer. Curr Pharm Des. 2008;14(11):1049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tapiero H, Mathe G, Couvreur P, Tew KDI. Arginine. Biomed Pharmacother. 2002;56(9):439–45.

    Article  CAS  PubMed  Google Scholar 

  11. Hsu CN, Tain YL. Impact of arginine nutrition and metabolism during pregnancy on offspring outcomes. Nutrients. 2019;11(7):1452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berard J, Bee G. Effects of dietary l-arginine supplementation to gilts during early gestation on foetal survival, growth and myofiber formation. Animal. 2010;4(10):1680–7.

    Article  CAS  PubMed  Google Scholar 

  13. Patejunas G, Bradley A, Beaudet AL, O’Brien WE. Generation of a mouse model for citrullinemia by targeted disruption of the argininosuccinate synthetase gene. Somat Cell Mol Genet. 1994;20(1):55–60.

    Article  CAS  PubMed  Google Scholar 

  14. Huang Z, Wang TS, Zhao YC, Zuo RJ, Deng WB, Chi YJ, Yang ZM. Cyclic adenosine monophosphate-induced argininosuccinate synthase 1 expression is essential during mouse decidualization. Mol Cell Endocrinol. 2014;388(1–2):20–31.

    Article  CAS  PubMed  Google Scholar 

  15. Gaccioli F, Lager S. Placental nutrient transport and intrauterine growth restriction. Front Physiol. 2016;7:40.

    Article  PubMed  PubMed Central  Google Scholar 

  16. McKeating DR, Fisher JJ, Perkins AV. Elemental metabolomics and pregnancy outcomes. Nutrients. 2019;11(1):73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pantham P, Rosario FJ, Weintraub ST, Nathanielsz PW, Powell TL, Li C, Jansson T. Down-regulation of placental transport of amino acids precedes the development of intrauterine growth restriction in maternal nutrient restricted baboons. Biol Reprod. 2016;95(5):98.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wale PL, Gardner DK. Oxygen regulates amino acid turnover and carbohydrate uptake during the preimplantation period of mouse embryo development. Biol Reprod. 2012;87(1):24, 1–8.

    Article  PubMed  Google Scholar 

  19. Leese HJ. Metabolism of the preimplantation embryo: 40 years on. Reproduction. 2012;143(4):417–27.

    Article  CAS  PubMed  Google Scholar 

  20. Brown LD, Green AS, Limesand SW, Rozance PJ. Maternal amino acid supplementation for intrauterine growth restriction. Front Biosci (Schol Ed). 2011;3:428–44.

    PubMed  Google Scholar 

  21. Cetin I, Marconi AM, Corbetta C, Lanfranchi A, Baggiani AM, Battaglia FC, Pardi G. Fetal amino acids in normal pregnancies and in pregnancies complicated by intrauterine growth retardation. Early Hum Dev. 1992;29(1–3):183–6.

    Article  CAS  PubMed  Google Scholar 

  22. Aplin JD, Myers JE, Timms K, Westwood M. Tracking placental development in health and disease. Nat Rev Endocrinol. 2020;16(9):479–94.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Z, Wang X, Wang J, Zhang L. The decreased expression of Stat3 and p-Stat3 in preeclampsia-like rat placenta. J Mol Histol. 2018;49(2):175–83.

    Article  CAS  PubMed  Google Scholar 

  24. Than NG, Romero R, Tarca AL, Kekesi KA, Xu Y, Xu Z, et al. Integrated systems biology approach identifies novel maternal and placental pathways of preeclampsia. Front Immunol. 2018;9:1661.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fantone S, Mazzucchelli R, Giannubilo SR, Ciavattini A, Marzioni D, Tossetta G. AT-rich interactive domain 1A protein expression in normal and pathological pregnancies complicated by preeclampsia. Histochem Cell Biol. 2020;154(3):339–46.

    Article  CAS  PubMed  Google Scholar 

  26. Licini C, Avellini C, Picchiassi E, Mensa E, Fantone S, Ramini D, et al. Pre-eclampsia predictive ability of maternal miR-125b: a clinical and experimental study. Transl Res. 2021;228:13–27.

    Article  CAS  PubMed  Google Scholar 

  27. Davis EF, Newton L, Lewandowski AJ, Lazdam M, Kelly BA, Kyriakou T, Leeson P. Pre-eclampsia and offspring cardiovascular health: mechanistic insights from experimental studies. Clin Sci (Lond). 2012;123(2):53–72.

    Article  PubMed  Google Scholar 

  28. Mongraw-Chaffin ML, Cirillo PM, Cohn BA. Preeclampsia and cardiovascular disease death: prospective evidence from the child health and development studies cohort. Hypertension. 2010;56(1):166–71.

    Article  CAS  PubMed  Google Scholar 

  29. Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2013;170(1):1–7.

    Article  PubMed  Google Scholar 

  30. Roberts JM, Escudero C. The placenta in preeclampsia. Pregnancy Hypertens. 2012;2(2):72–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roberts JM, August PA, Bakris G, Barton JR, Bernstein IM, Druzin M, et al. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122–31.

    Google Scholar 

  32. Tossetta G, Fantone S, Giannubilo SR, Marinelli Busilacchi E, Ciavattini A, Castellucci M, Di Simone N, Mattioli-Belmonte M, Marzioni D. Pre-eclampsia onset and SPARC: a possible involvement in placenta development. J Cell Physiol. 2019;234(5):6091–8.

    Article  CAS  PubMed  Google Scholar 

  33. Licini C, Tossetta G, Avellini C, Ciarmela P, Lorenzi T, Toti P, et al. Analysis of cell-cell junctions in human amnion and chorionic plate affected by chorioamnionitis. Histol Histopathol. 2016;31(7):759–67.

    CAS  PubMed  Google Scholar 

  34. Morosin SK, Delforce SJ, Corbisier de Meaultsart C, Lumbers ER, Pringle KG. FURIN and placental syncytialisation: a cautionary tale. Cell Death Dis. 2021;12(7):635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alahari S, Post M, Caniggia I. Jumonji domain containing protein 6: a novel oxygen sensor in the human placenta. Endocrinology. 2015;156(8):3012–25.

    Article  CAS  PubMed  Google Scholar 

  36. Marinelli Busilacchi E, Costantini A, Mancini G, Tossetta G, Olivieri J, Poloni A, et al. Nilotinib treatment of patients affected by chronic graft-versus-host disease reduces collagen production and skin fibrosis by downmodulating the TGF-beta and p-SMAD pathway. Biol Blood Marrow Transplant. 2020;26(5):823–34.

    Article  CAS  PubMed  Google Scholar 

  37. Rodrigues H, Silva C, Martel F. The effects of aspartame on the HTR8/SVneo extravillous trophoblast cell line. Reprod Biol. 2022;22(3): 100678.

    Article  CAS  PubMed  Google Scholar 

  38. Ozmen A, Guzeloglu-Kayisli O, Tabak S, Guo X, Semerci N, Nwabuobi C, et al. Preeclampsia is associated with reduced ISG15 levels impairing extravillous trophoblast invasion. Front Cell Dev Biol. 2022;10: 898088.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang Z, Yang Y, Lv X, Liu H. Interleukin-17 promotes proliferation, migration, and invasion of trophoblasts via regulating PPAR-gamma/RXR-alpha/Wnt signaling. Bioengineered. 2022;13(1):1224–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Das M, Xu B, Lin L, Chakrabarti S, Shivaswamy V, Rote NS. Phosphatidylserine efflux and intercellular fusion in a BeWo model of human villous cytotrophoblast. Placenta. 2004;25(5):396–407.

    Article  CAS  PubMed  Google Scholar 

  41. Orendi K, Gauster M, Moser G, Meiri H, Huppertz B. The choriocarcinoma cell line BeWo: syncytial fusion and expression of syncytium-specific proteins. Reproduction. 2010;140(5):759–66.

    Article  CAS  PubMed  Google Scholar 

  42. Butler TM, Pater JA, MacPhee DJ. Integrin linked kinase regulates syncytialization of BeWo trophoblast cells. Biol Reprod. 2017;96(3):673–85.

    Article  PubMed  Google Scholar 

  43. Melena I, Piani F, Tommerdahl KL, Severn C, Chung LT, MacDonald A, et al. Aminoaciduria and metabolic dysregulation during diabetic ketoacidosis: results from the diabetic kidney alarm (DKA) study. J Diabetes Complications. 2022;36(6): 108203.

    Article  CAS  PubMed  Google Scholar 

  44. Vigers T, Vinovskis C, Li LP, Prasad P, Heerspink H, D’Alessandro A, et al. Plasma levels of carboxylic acids are markers of early kidney dysfunction in young people with type 1 diabetes. Pediatr Nephrol. 2022. https://doi.org/10.1007/s00467-022-05531-3.

    Article  PubMed  Google Scholar 

  45. Guerby P, Tasta O, Swiader A, Pont F, Bujold E, Parant O, Vayssiere C, Salvayre R, Negre-Salvayre A. Role of oxidative stress in the dysfunction of the placental endothelial nitric oxide synthase in preeclampsia. Redox Biol. 2021;40: 101861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huppertz B. The anatomy of the normal placenta. J Clin Pathol. 2008;61(12):1296–302.

    Article  CAS  PubMed  Google Scholar 

  47. Turco MY, Gardner L, Kay RG, Hamilton RS, Prater M, Hollinshead MS, et al. Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature. 2018;564(7735):263–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Haider S, Meinhardt G, Saleh L, Kunihs V, Gamperl M, Kaindl U, et al. Self-renewing trophoblast organoids recapitulate the developmental program of the early human placenta. Stem Cell Reports. 2018;11(2):537–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jauniaux E, Watson AL, Hempstock J, Bao YP, Skepper JN, Burton GJ. Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am J Pathol. 2000;157(6):2111–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rodesch F, Simon P, Donner C, Jauniaux E. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol. 1992;80(2):283–5.

    CAS  PubMed  Google Scholar 

  51. Treissman J, Yuan V, Baltayeva J, Le HT, Castellana B, Robinson WP, Beristain AG. Low oxygen enhances trophoblast column growth by potentiating differentiation of the extravillous lineage and promoting LOX activity. Development. 2020. https://doi.org/10.1242/dev.181263.

    Article  PubMed  Google Scholar 

  52. Bednov A, Espinoza J, Betancourt A, Vedernikov Y, Belfort M, Yallampalli C. L-arginine prevents hypoxia-induced vasoconstriction in dual-perfused human placental cotyledons. Placenta. 2015;36(11):1254–9.

    Article  CAS  PubMed  Google Scholar 

  53. Chen J, Gong X, Chen P, Luo K, Zhang X. Effect of L-arginine and sildenafil citrate on intrauterine growth restriction fetuses: a meta-analysis. BMC Pregnancy Childbirth. 2016;16:225.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding for this work was provided by Scientific Research Grant from Università Politecnica delle Marche (2020–2021) to D.M. Giovanni Tossetta is a recipient of a fellowship Starting Grant 2018 (SG-2018–12367994) of the Italian Ministry of Health.

Author information

Authors and Affiliations

Authors

Contributions

TG and MD contributed to the conception of the study. TG, FP, FS, RG, and MD contributed to the design, performance, and data analysis of the experiments. GSR, DSN, GB, and GS contributed to the sample collection. TG, EL, and MD contributed to the writing of the manuscript. All the authors contributed to the critical revision and final approval of the article.

Corresponding author

Correspondence to Giovanni Tossetta.

Ethics declarations

Conflict of interest

The authors declare that they do not have a conflict of interest.

Ethical approval

Pregnant women gave their written informed consent to collect placental specimens and the procedures followed for the collection of samples were in accordance with the Helsinki Declaration of 1975, as revised in 2013. The permission of the Human Investigation Committee of Marche Region (IT) was granted (protocol number 2019.172; study ID 980; CERM number 172).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fantone, S., Ermini, L., Piani, F. et al. Downregulation of argininosuccinate synthase 1 (ASS1) is associated with hypoxia in placental development. Human Cell 36, 1190–1198 (2023). https://doi.org/10.1007/s13577-023-00901-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00901-x

Keywords

Navigation