Skip to main content

Advertisement

Log in

Mitochondrial transfer in PC-3 cells fingerprinted in ferroptosis sensitivity: a brand new approach targeting cancer metabolism

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Despite recent therapeutic advancements, cancer remains one of the leading causes of death worldwide, with mitochondrial dysfunction being associated with cancer initiation and progression, along with chemotherapeutic resistance and ferroptotic cell death failure; however, the significance of mitochondria in various cancer types remains a matter of debate for the moment. The aim of this study is to ascertain the outcome of transferring healthy mitochondria into the aggressive and rapidly proliferating prostate cancer (PC-3) cells and afterwards evaluate the efficacy of combination therapy with or without the ferroptosis inducer erastin. In this sense, normal mitochondria were first isolated from human umbilical cord-derived mesenchymal stem cells, human umbilical vein endothelial cells, and human embryonic kidney cells and were later transferred into PC-3 cells and rhodamine 6G-treated PC-3 cells exhibiting mitochondrial dysfunction. Next, cell proliferation and sensitivity to cisplatin were measured using Cell Counting Kit-8 and the Malondialdehyde Assay Lipid Peroxidation Kit, respectively, along with ferroptotic damage. Transferring the healthy mitochondria into PC-3 cells was observed to increase cell proliferation and rescue the cisplatin-induced cell death, but not the erastin-induced ferroptosis, as in mitochondrial transfer effectively enhanced erastin-mediated ferroptosis in PC-3 cells. Hence, the introduction of healthy mitochondria into the highly aggressive and proliferating cancer cells would be deemed a brand new therapeutic strategy for a variety of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Padma VV. An overview of targeted cancer therapy. Biomedicine. 2015;5(4):1–6.

    Article  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. 2021;71(3):209–49.

    PubMed  Google Scholar 

  3. Seyfried TN, Shelton LM. Cancer as a metabolic disease. Nutr Metab. 2010;7(1):1–22.

    Article  Google Scholar 

  4. Seyfried TN, Flores RE, Poff AM, D’Agostino DP. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis. 2014;35(3):515–27.

    Article  CAS  PubMed  Google Scholar 

  5. Mizutani S, Miyato Y, Shidara Y, Asoh S, Tokunaga A, Tajiri T, et al. Mutations in the mitochondrial genome confer resistance of cancer cells to anticancer drugs. Cancer Sci. 2009;100(9):1680–7.

    Article  CAS  PubMed  Google Scholar 

  6. Ma J, Zhang Q, Chen S, Fang B, Yang Q, Chen C, et al. Mitochondrial dysfunction promotes breast cancer cell migration and invasion through HIF1α accumulation via increased production of reactive oxygen species. PLoS One. 2013;8(7):e69485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferecatu I, Canal F, Fabbri L, Mazure NM, Bouton C, Golinelli-Cohen M-P. Dysfunction in the mitochondrial Fe-S assembly machinery leads to formation of the chemoresistant truncated VDAC1 isoform without HIF-1α activation. PLoS One. 2018;13(3):e0194782.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.

    Article  CAS  PubMed  Google Scholar 

  9. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  10. Vyas S, Zaganjor E, Haigis MC. Mitochondria and cancer. Cell. 2016;166(3):555–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee H-C, Li S-H, Lin J-C, Wu C-C, Yeh D-C, Wei Y-H. Somatic mutations in the D-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutat Res Fundam Mol Mech Mutagenes. 2004;547(1–2):71–8.

    Article  CAS  Google Scholar 

  12. Wu CW, Yin PH, Hung WY, Li AFY, Li SH, Chi CW, et al. Mitochondrial DNA mutations and mitochondrial DNA depletion in gastric cancer. Genes Chromosom Cancer. 2005;44(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  13. Tseng LM, Yin PH, Chi CW, Hsu CY, Wu CW, Lee LM, et al. Mitochondrial DNA mutations and mitochondrial DNA depletion in breast cancer. Genes Chromosom Cancer. 2006;45(7):629–38.

    Article  CAS  PubMed  Google Scholar 

  14. Chandel NS. Mitochondria as signaling organelles. BMC Biol. 2014;12(1):1–7.

    Article  Google Scholar 

  15. James AM, Murphy MP. How mitochondrial damage affects cell function. J Biomed Sci. 2002;9(6):475–87.

    Article  CAS  PubMed  Google Scholar 

  16. Hsu C-C, Tseng L-M, Lee H-C. Role of mitochondrial dysfunction in cancer progression. Exp Biol Med. 2016;241(12):1281–95.

    Article  CAS  Google Scholar 

  17. Kuwahara Y, Tomita K, Roudkenar MH, Roushandeh AM, Urushihara Y, Igarashi K, et al. Decreased mitochondrial membrane potential is an indicator of radioresistant cancer cells. Life Sci. 2021;286:120051.

    Article  CAS  PubMed  Google Scholar 

  18. Zampieri LX, Silva-Almeida C, Rondeau JD, Sonveaux P. Mitochondrial transfer in cancer: a comprehensive review. Int J Mol Sci. 2021;22(6):3245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu C-S, Chang J-C, Kuo S-J, Liu K-H, Lin T-T, Cheng W-L, et al. Delivering healthy mitochondria for the therapy of mitochondrial diseases and beyond. Int J Biochem Cell Biol. 2014;53:141–6.

    Article  CAS  PubMed  Google Scholar 

  20. Lazennec G, Lam PY. Recent discoveries concerning the tumor-mesenchymal stem cell interactions. Biochim Biophys Acta Rev Cancer. 2016;1866(2):290–9.

    Article  Google Scholar 

  21. Hill CAS. Interactions between endothelial selectins and cancer cells regulate metastasis. Front Biosci-Landmark. 2011;16(9):3233–51.

    Article  Google Scholar 

  22. Mierke CT. Role of the endothelium during tumor cell metastasis: is the endothelium a barrier or a promoter for cell invasion and metastasis? J Biophys. 2008;2008:183516. https://doi.org/10.1155/2008/183516.

    Article  CAS  PubMed  Google Scholar 

  23. Gurke S, Barroso JF, Gerdes H-H. The art of cellular communication: tunneling nanotubes bridge the divide. Histochem Cell Biol. 2008;129(5):539–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abounit S, Zurzolo C. Wiring through tunneling nanotubes–from electrical signals to organelle transfer. J Cell Sci. 2012;125(5):1089–98.

    Article  CAS  PubMed  Google Scholar 

  25. Valashedi MR, Najafi-Ghalehlou N, Nikoo A, Bamshad C, Tomita K, Kuwahara Y, et al. Cashing in on ferroptosis against tumor cells: usher in the next chapter. Life Sci. 2021;285:119958.

    Article  CAS  PubMed  Google Scholar 

  26. Battaglia AM, Chirillo R, Aversa I, Sacco A, Costanzo F, Biamonte F. Ferroptosis and cancer: mitochondria meet the “iron maiden” cell death. Cells. 2020;9(6):1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang H, Liu C, Zhao Y, Gao G. Mitochondria regulation in ferroptosis. Eur J Cell Biol. 2020;99(1):151058.

    Article  CAS  PubMed  Google Scholar 

  28. Li J, Cao F, Yin H-l, Huang Z-j, Lin Z-t, Mao N, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Valashedi MR, Nikoo A, Najafi-Ghalehlou N, Tomita K, Kuwahara Y, Sato T, et al. Pharmacological targeting of ferroptosis in cancer treatment. Curr Cancer Drug Targets. 2022;22(2):108–25.

    Article  CAS  PubMed  Google Scholar 

  30. Valashedi MR, Bamshad C, Najafi-Ghalehlou N, Nikoo A, Tomita K, Kuwahara Y, et al. Non-coding RNAs in ferroptotic cancer cell death pathway: meet the new masters. Hum Cell. 2022;35(4):972–94. https://doi.org/10.1007/s13577-022-00699-0.

    Article  CAS  PubMed  Google Scholar 

  31. Valashedi MR, Roushandeh AM, Tomita K, Kuwahara Y, Pourmohammadi-Bejarpasi Z, Kozani PS, et al. CRISPR/Cas9-mediated knockout of Lcn2 in human breast cancer cell line MDA-MB-231 ameliorates erastin-mediated ferroptosis and increases cisplatin vulnerability. Life Sci. 2022;304:120704. https://doi.org/10.1016/j.lfs.2022.120704.

    Article  CAS  PubMed  Google Scholar 

  32. Elliott R, Jiang X, Head J. Mitochondria organelle transplantation: introduction of normal epithelial mitochondria into human cancer cells inhibits proliferation and increases drug sensitivity. Breast Cancer Res Treat. 2012;136(2):347–54.

    Article  CAS  PubMed  Google Scholar 

  33. Caicedo A, Fritz V, Brondello J-M, Ayala M, Dennemont I, Abdellaoui N, et al. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep. 2015;5(1):1–10.

    Article  Google Scholar 

  34. Amiri F, Halabian R, Salimian M, Shokrgozar MA, Soleimani M, Jahanian-Najafabadi A, et al. Induction of multipotency in umbilical cord-derived mesenchymal stem cells cultivated under suspension conditions. Cell Stress Chaperones. 2014;19(5):657–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci. 2005;102(3):719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cho YM, Kim JH, Kim M, Park SJ, Koh SH, Ahn HS, et al. Mesenchymal stem cells transfer mitochondria to the cells with virtually no mitochondrial function but not with pathogenic mtDNA mutations. PLoS One. 2012;7(3):e32778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fernández-Moreno M, Hermida-Gomez T, Gallardo ME, Dalmao-Fernández A, Rego-Pérez I, Garesse R, et al. Generating Rho-0 cells using mesenchymal stem cell lines. PLoS One. 2016;11(10):e0164199.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kim MJ, Hwang JW, Yun C-K, Lee Y, Choi Y-S. Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function. Sci Rep. 2018;8(1):1–13.

    Google Scholar 

  39. Kheirandish-Rostami M, Roudkenar MH, Jahanian-Najafabadi A, Tomita K, Kuwahara Y, Sato T, et al. Mitochondrial characteristics contribute to proliferation and migration potency of MDA-MB-231 cancer cells and their response to cisplatin treatment. Life Sci. 2020;244:117339.

    Article  CAS  PubMed  Google Scholar 

  40. Pendergrass W, Wolf N, Poot M. Efficacy of MitoTracker Green™ and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry A. 2004;61(2):162–9.

    Article  CAS  PubMed  Google Scholar 

  41. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes H-H. Nanotubular highways for intercellular organelle transport. Science. 2004;303(5660):1007–10.

    Article  CAS  PubMed  Google Scholar 

  42. Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, et al. Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;18(5):759–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Herst PM, Dawson RH, Berridge MV. Intercellular communication in tumor biology: a role for mitochondrial transfer. Front oncol. 2018;8:344. https://doi.org/10.3389/fonc.2018.00344.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kitani T, Kami D, Matoba S, Gojo S. Internalization of isolated functional mitochondria: involvement of macropinocytosis. J Cell Mol Med. 2014;18(8):1694–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chang JC. Cancer stem cells: role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine. 2016;95(1 Suppl 1):S20–5. https://doi.org/10.1097/MD.0000000000004766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Naphade S, Sharma J, GaideChevronnay HP, Shook MA, Yeagy BA, Rocca CJ, et al. Lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes. Stem cells. 2015;33(1):301–9.

    Article  CAS  PubMed  Google Scholar 

  47. Spees JL, Olson SD, Whitney MJ, Prockop DJ. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci. 2006;103(5):1283–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Koziel A, Sobieraj I, Jarmuszkiewicz W. Increased activity of mitochondrial uncoupling protein 2 improves stress resistance in cultured endothelial cells exposed in vitro to high glucose levels. Am J Physiol Heart Circ Physiol. 2015;309(1):H147–56.

    Article  CAS  PubMed  Google Scholar 

  49. Chang J-C, Chang H-S, Wu Y-C, Cheng W-L, Lin T-T, Chang H-J, et al. Mitochondrial transplantation regulates antitumour activity, chemoresistance and mitochondrial dynamics in breast cancer. J Exp Clin Cancer Res. 2019;38(1):1–16.

    Article  CAS  Google Scholar 

  50. Kalaszczynska I, Ferdyn K. Wharton’s jelly derived mesenchymal stem cells: future of regenerative medicine? Recent findings and clinical significance. BioMed Res Int. 2015;2015:430847. https://doi.org/10.1155/2015/430847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chao KC, Yang HT, Chen MW. Human umbilical cord mesenchymal stem cells suppress breast cancer tumourigenesis through direct cell–cell contact and internalization. J Cell Mol Med. 2012;16(8):1803–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marlein CR, Piddock RE, Mistry JJ, Zaitseva L, Hellmich C, Horton RH, et al. CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myelomamyeloma favors OXPHOS after mitochondrial transfer. Can Res. 2019;79(9):2285–97.

    Article  CAS  Google Scholar 

  53. Roushandeh AM, Tomita K, Kuwahara Y, Jahanian-Najafabadi A, Igarashi K, Roudkenar MH, et al. Transfer of healthy fibroblast-derived mitochondria to HeLa ρ0 and SAS ρ0 cells recovers the proliferation capabilities of these cancer cells under conventional culture medium, but increase their sensitivity to cisplatin-induced apoptotic death. Mol Biol Rep. 2020;47(6):4401–11.

    Article  CAS  PubMed  Google Scholar 

  54. Wang X, Gerdes H-H. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ. 2015;22(7):1181–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pasquier J, Guerrouahen BS, Al Thawadi H, Ghiabi P, Maleki M, Abu-Kaoud N, et al. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J Transl Med. 2013;11(1):1–14.

    Article  Google Scholar 

  56. Wang J, Liu X, Qiu Y, Shi Y, Cai J, Wang B, et al. Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells. J Hematol Oncol. 2018;11(1):1–13.

    Article  Google Scholar 

  57. Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB, et al. Role of mitochondria in ferroptosis. Mol Cell. 2019;73(2):354-63. e3.

    Article  CAS  PubMed  Google Scholar 

  58. Gaschler MM, Hu F, Feng H, Linkermann A, Min W, Stockwell BR. Determination of the subcellular localization and mechanism of action of ferrostatins in suppressing ferroptosis. ACS Chem Biol. 2018;13(4):1013–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Takashi Y, Tomita K, Kuwahara Y, Roudkenar MH, Roushandeh AM, Igarashi K, et al. Mitochondrial dysfunction promotes aquaporin expression that controls hydrogen peroxide permeability and ferroptosis. Free Radic Biol Med. 2020;161:60–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Soupene E, Fyrst H, Kuypers FA. Mammalian acyl-CoA: lysophosphatidylcholine acyltransferase enzymes. Proc Natl Acad Sci. 2008;105(1):88–93.

    Article  CAS  PubMed  Google Scholar 

  62. Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, Croix CS, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13(1):81–90.

    Article  CAS  PubMed  Google Scholar 

  63. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13(1):91–8.

    Article  CAS  PubMed  Google Scholar 

  64. Yuan H, Li X, Zhang X, Kang R, Tang D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun. 2016;478(3):1338–43.

    Article  CAS  PubMed  Google Scholar 

  65. Zeth K, Zachariae U. Ten years of high resolution structural research on the voltage dependent anion channel (VDAC)—Recent developments and future directions. Front Physiol. 2018;9:108.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Harris RA, Fenton AW. A critical review of the role of M2PYK in the Warburg effect. Biochim Biophys Acta Rev Cancer. 2019;1871(2):225–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, et al. RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007;447(7146):865–9.

    Article  CAS  Google Scholar 

  68. Fang D, Maldonado EN. VDAC regulation: a mitochondrial target to stop cell proliferation. Adv Cancer Res. 2018;138:41–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. DeHart DN, Fang D, Heslop K, Li L, Lemasters JJ, Maldonado EN. Opening of voltage dependent anion channels promotes reactive oxygen species generation, mitochondrial dysfunction and cell death in cancer cells. Biochem Pharmacol. 2018;148:155–62.

    Article  CAS  PubMed  Google Scholar 

  70. Sun Y, Deng R, Zhang C. Erastin induces apoptotic and ferroptotic cell death by inducing ROS accumulation by causing mitochondrial dysfunction in gastric cancer cell HGC-27. Mol Med Rep. 2020;22(4):2826–32.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The present study was supported financially by the Research Deputy of Guilan University of Medical Sciences (Grant No: 1400042807) and approved by the Ethics Committee of Guilan University of Medical Sciences (Code number: IR.GUMS.REC.1400.205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaneh Mohammadi Roushandeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikoo, A., Roudkenar, M.H., Sato, T. et al. Mitochondrial transfer in PC-3 cells fingerprinted in ferroptosis sensitivity: a brand new approach targeting cancer metabolism. Human Cell 36, 1441–1450 (2023). https://doi.org/10.1007/s13577-023-00896-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00896-5

Keywords

Navigation