Skip to main content

Advertisement

Log in

Paraoxonase-2 is upregulated in triple negative breast cancer and contributes to tumor progression and chemoresistance

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Triple negative breast cancer (TNBC) displays a high aggressive behavior, tendency to relapse and early metastasize, leading to poor prognosis. The lack of estrogen receptors, and human epidermal growth factor receptor 2, prevents the use of endocrine or molecular targeted therapy, being therapeutical options for TNBC managements mostly limited to surgery, radiotherapy and mainly chemotherapy. While an important number of TNBCs initially responds to chemotherapy, they are prone to develop chemoresistance over the time. Thus, there is an urgent need to identify novel molecular targets to improve the outcome of chemotherapy in TNBC. In this work we focused on the enzyme paraoxonase-2 (PON2) which has been reported to be overexpressed in several tumors contributing to cancer aggressiveness and chemoresistance. Through a case–control study, we analyzed PON2 immunohistochemical expression in breast cancer molecular subtypes Luminal A, Luminal B, Luminal B HER2+, HER2 + and TNBC. Subsequently, we evaluated the in vitro effect of PON2 downregulation on cell proliferation and response to chemotherapeutics. Our results showed that the PON2 expression levels were significantly upregulated in the infiltrating tumors related to the subtypes Luminal A, HER2+ and TNBC compared to the healthy tissue. Furthermore, PON2 downregulation led to a decrease in cell proliferation of breast cancer cells, and significantly enhanced the cytotoxicity of chemotherapeutics on the TNBC cells. Although further analyses are necessary to deeply understand the mechanisms by which the enzyme could participate to breast cancer tumorigenesis, our results seem to demonstrate that PON2 could represent a promising molecular target for TNBC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

PON2:

Paraoxonase-2

BC:

Breast cancer

TNBC:

Triple negative breast cancer

BRCA:

Breast cancer susceptibility gene

ER:

Estrogen receptors

PR:

Progesterone receptors

HER2:

Human epidermal growth factor receptor 2

pCR:

Pathological complete response

CDDP:

Cisplatin

5-FU:

5-Fluorouracil

PON:

Paraoxonase

PON1:

Paraoxonase-1

PON3:

Paraoxonase-3

DCIS:

Ductal carcinoma in situ

IDC:

Ductal infiltrating carcinoma

ROS:

Reactive oxygen species

FFPE:

Formalin-fixed and paraffin-embedded

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

BCC:

Basal cell carcinoma

UPR:

Unfolded protein response

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  2. Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol. 2013;24(9):2206–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shao Z, Chaudhri S, Guo M, Zhang L, Rea D. Neoadjuvant chemotherapy in triple negative breast cancer: an observational study. Oncol Res. 2016;23(6):291–302.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15 Pt 1):4429–34.

    Article  PubMed  Google Scholar 

  5. Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):61.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Moran MS. Should triple-negative breast cancer (TNBC) subtype affect local-regional therapy decision making? Am Soc Clin Oncol Educ Book. 2014;34:e32–6.

    Article  Google Scholar 

  7. Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig. 2011;121(7):2750–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xiao Y, Gao W. Therapeutic pattern and progress of neoadjuvant treatment for triple-negative breast cancer. Oncol Lett. 2022;24(1):219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Assidicky R, Tokat UM, Tarman IO, et al. Targeting HIF1-alpha/miR-326/ITGA5 axis potentiates chemotherapy response in triple-negative breast cancer. Breast Cancer Res Treat. 2022;193(2):331–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fendereski A, Hajizadeh E, Haghighat S, Rasekhi A. Long-term outcomes of non-metastatic breast cancer patients by molecular subtypes. BMC Womens Health. 2022;22(1):268.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hong J, Park YH. Perioperative HER2 targeted treatment in early stage HER2-positive breast cancer. Ther Adv Med Oncol. 2022;14:17588359221106564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cardoso F, Paluch-Shimon S, Senkus E, et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). Ann Oncol. 2020;31(12):1623–49.

    Article  CAS  PubMed  Google Scholar 

  13. She ZG, Chen HZ, Yan Y, Li H, Liu DP. The human paraoxonase gene cluster as a target in the treatment of atherosclerosis. Antioxid Redox Signal. 2012;16(6):597–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Devarajan A, Bourquard N, Hama S, et al. Paraoxonase 2 deficiency alters mitochondrial function and exacerbates the development of atherosclerosis. Antioxid Redox Signal. 2011;14(3):341–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sartini D, Campagna R, Lucarini G, et al. Differential immunohistochemical expression of paraoxonase-2 in actinic keratosis and squamous cell carcinoma. Hum Cell. 2021;34(6):1929–31.

    Article  CAS  PubMed  Google Scholar 

  16. Parween F, Gupta RD. Insights into the role of paraoxonase 2 in human pathophysiology. J Biosci. 2022;47(1):4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bacchetti T, Salvolini E, Pompei V, et al. Paraoxonase-2: a potential biomarker for skin cancer aggressiveness. Eur J Clin Investig. 2021;51(5): e13452.

    Article  CAS  Google Scholar 

  18. Campagna R, Salvolini E, Pompei V, et al. Nicotinamide N-methyltransferase gene silencing enhances chemosensitivity of melanoma cell lines. Pigment Cell Melanoma Res. 2021;34(6):1039–48.

    Article  CAS  PubMed  Google Scholar 

  19. Adel NG. Current treatment landscape and emerging therapies for metastatic triple-negative breast cancer. Am J Manag Care. 2021;27(5 Suppl):S87–96.

    PubMed  Google Scholar 

  20. Wahba HA, El-Hadaad HA. Current approaches in treatment of triple-negative breast cancer. Cancer Biol Med. 2015;12(2):106–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Baranova A, Krasnoselskyi M, Starikov V, et al. Triple-negative breast cancer: current treatment strategies and factors of negative prognosis. J Med Life. 2022;15(2):153–61.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang X, Xu G, Zhang J, et al. The clinical and prognostic significance of paraoxonase-2 in gastric cancer patients: immunohistochemical analysis. Hum Cell. 2019;32(4):487–94.

    Article  CAS  PubMed  Google Scholar 

  23. Fumarola S, Cecati M, Sartini D, et al. Bladder cancer chemosensitivity is affected by paraoxonase-2 expression. Antioxidants (Basel). 2020;9(2):175.

    Article  CAS  PubMed  Google Scholar 

  24. Nagarajan A, Dogra SK, Sun L, et al. Paraoxonase 2 facilitates pancreatic cancer growth and metastasis by stimulating glut1-mediated glucose transport. Mol Cell. 2017;67(4):685 e686-701 e686.

    Article  Google Scholar 

  25. Tseng JH, Chen CY, Chen PC, et al. Valproic acid inhibits glioblastoma multiforme cell growth via paraoxonase 2 expression. Oncotarget. 2017;8(9):14666–79.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Witte I, Foerstermann U, Devarajan A, Reddy ST, Horke S. Protectors or traitors: the roles of PON2 and PON3 in atherosclerosis and cancer. J Lipids. 2012;2012: 342806.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dahan M, Hequet D, Bonneau C, Paoletti X, Rouzier R. Has tumor doubling time in breast cancer changed over the past 80 years? A systematic review. Cancer Med. 2021;10(15):5203–17.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sharma P, Lopez-Tarruella S, Garcia-Saenz JA, et al. Efficacy of neoadjuvant carboplatin plus docetaxel in triple-negative breast cancer: combined analysis of two cohorts. Clin Cancer Res. 2017;23(3):649–57.

    Article  CAS  PubMed  Google Scholar 

  29. Conklin KA. Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther. 2004;3(4):294–300.

    Article  CAS  PubMed  Google Scholar 

  30. Campagna R, Bacchetti T, Salvolini E, et al. Paraoxonase-2 silencing enhances sensitivity of A375 melanoma cells to treatment with cisplatin. Antioxidants (Basel). 2020;9(12):1238.

    Article  CAS  PubMed  Google Scholar 

  31. Witte I, Altenhofer S, Wilgenbus P, et al. Beyond reduction of atherosclerosis: PON2 provides apoptosis resistance and stabilizes tumor cells. Cell Death Dis. 2011;2(1): e112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hui PY, Chen YH, Qin J, Jiang XH. PON2 blockade overcomes dexamethasone resistance in acute lymphoblastic leukemia. Hematology. 2022;27(1):32–42.

    Article  CAS  PubMed  Google Scholar 

  33. Frank O, Brors B, Fabarius A, et al. Gene expression signature of primary imatinib-resistant chronic myeloid leukemia patients. Leukemia. 2006;20(8):1400–7.

    Article  CAS  PubMed  Google Scholar 

  34. Ravi R, Ragavachetty Nagaraj N, Subramaniam RB. Effect of advanced glycation end product on paraoxonase 2 expression: Its impact on endoplasmic reticulum stress and inflammation in HUVECs. Life Sci. 2020;246: 117397.

    Article  CAS  PubMed  Google Scholar 

  35. Barrera G, Cucci MA, Grattarola M, Dianzani C, Muzio G, Pizzimenti S. Control of oxidative stress in cancer chemoresistance: spotlight on Nrf2 role. Antioxidants (Basel). 2021;10(4):510.

    Article  CAS  PubMed  Google Scholar 

  36. Emanuelli M, Sartini D, Molinelli E, et al. The double-edged sword of oxidative stress in skin damage and melanoma: from physiopathology to therapeutical approaches. Antioxidants (Basel). 2022;11(4):612.

    Article  CAS  PubMed  Google Scholar 

  37. Kruger M, Pabst AM, Al-Nawas B, Horke S, Moergel M. Paraoxonase-2 (PON2) protects oral squamous cell cancer cells against irradiation-induced apoptosis. J Cancer Res Clin Oncol. 2015;141(10):1757–66.

    Article  PubMed  Google Scholar 

  38. Kruger M, Amort J, Wilgenbus P, et al. The anti-apoptotic PON2 protein is Wnt/beta-catenin-regulated and correlates with radiotherapy resistance in OSCC patients. Oncotarget. 2016;7(32):51082–95.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim W, Lee S, Seo D, et al. Cellular stress responses in radiotherapy. Cells. 2019;8(9):1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Fondazione Umberto Veronesi which sponsored Roberto Campagna post-doctoral fellowships in 2021 and 2022.

Funding

This research was partially supported by the Fondazione Umberto Veronesi which sponsored Roberto Campagna post-doctoral fellowships in 2021 and 2022.

Author information

Authors and Affiliations

Authors

Contributions

RC: conceptualization, investigation, methodology, formal analysis, writing—original draft preparation. VP: investigation, formal analysis, visualization. SG: investigation, visualization, data curation. DM: investigation, visualization, data curation. GG: supervision, resources. DS: validation, writing—review and editing. ENS: software. ME: supervision, resources, writing—review and editing.

Corresponding author

Correspondence to Davide Sartini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This study was performed on formalin fixed and paraffin-embedded tissue specimens, previously collected for diagnostic purposes. According to the Ethics Committee of the Marche region ethical approval for such studies is not required; it is sufficient to send a notification.

Informed consent

All participants gave their informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 2049 KB)

Supplementary file2 (TIF 2942 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campagna, R., Pozzi, V., Giorgini, S. et al. Paraoxonase-2 is upregulated in triple negative breast cancer and contributes to tumor progression and chemoresistance. Human Cell 36, 1108–1119 (2023). https://doi.org/10.1007/s13577-023-00892-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00892-9

Keywords

Navigation