Skip to main content

Advertisement

Log in

Systematic single-cell dissecting reveals heterogeneous oncofetal reprogramming in the tumor microenvironment of gastric cancer

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

A Correction to this article was published on 16 February 2023

This article has been updated

Abstract

Oncofetal reprogramming of the tumor microenvironment is clinically relevant. This study used the non-negative matrix factorial (NMF) algorithm for single-cell RNA sequencing data of gastric cancer (GC) based on embryonic stem genes. Pseudotime analysis, cell–cell interaction analysis, and SCENIC analysis revealed that cancer-associated fibroblasts (CAFs), tumor-associated endothelial cells (TECs), and tumor-associated macrophages (TAMs) have different oncofetal reprogramming that affects cell function, enhances intercellular communication, and activates multiple transcription factors in these cells. Furthermore, based on the signatures of the newly defined oncofetal cell subtypes and expression profiles of large cohorts in GC patients, we determined that GJA1 + TEC-C2, IFITM1 + CAF-C3, PODXL + TEC-C1, SFRP2 + CAF-C2, and SRSF7 + CAF-C1 are crucial prognostic factors for GC patients and predictors of immune checkpoint blockade in GC. Cell subtypes were validated by immunohistochemical methods. Our novel, profound, and systematic analysis of the oncofetal reprogramming of GC may facilitate the development of improved drugs for treating GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

(source HPA ID: GCAB010753. Patient ID: 2066, male, age 76). Panel2: IFITM1 + fibroblasts were marked with a black arrow. Protein was mainly expressed on cell membrane (source HPA ID: HPA004810. Patient ID: 2105, male, age 62 years). Panel3: PODXL + endothelial cells were marked with a black arrow. Protein was mainly expressed on cell membrane (source HPA ID: HPA002110. Patient ID: 2626, female, age 79 years). Panel4: SRSF7 + fibroblasts were marked with black arrows. Protein was mainly expressed in the nucleus (source HPA ID: HPA056926. Patient ID: 650, male, age 68 years)

Similar content being viewed by others

Data availability

The datasets generated for this study can be found in the GEO database (https://www.ncbi.nlm.nih.gov/geo/) and Xena GDC TCGA (https://xenabrowser.net/datapages/). IHC images can be publicly downloaded from The Human Protein Atlas (HPA) database (https://www.proteinatlas.org).

Code availability

R and other custom scripts for analyzing data are available upon request.

Change history

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. 2021;71:209–49.

    PubMed  Google Scholar 

  2. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  PubMed  Google Scholar 

  3. Manzo G. Similarities between embryo development and cancer process suggest new strategies for research and therapy of tumors: a new point of view. Front Cell Dev Biol. 2019;7:20.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sharma A, Blériot C, Currenti J, Ginhoux F. Oncofetal reprogramming in tumour development and progression. Nat Rev Cancer. 2022;22:593–602.

    Article  CAS  PubMed  Google Scholar 

  5. Peng H, Wang X, Du J, Cui Q, Huang Y, Jin H. Metabolic reprogramming of vascular endothelial cells: basic research and clinical applications. Front Cell Dev Biol. 2021;9: 626047.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sharma A, Seow JJW, Dutertre CA, et al. Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma. Cell. 2020;183:377-94.e21.

    Article  CAS  PubMed  Google Scholar 

  7. Devalaraja S, To TKJ, Folkert IW, et al. Tumor-derived retinoic acid regulates intratumoral monocyte differentiation to promote immune suppression. Cell. 2020;180:1098-114.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.

    Article  PubMed  Google Scholar 

  9. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mo S, Dai L, Wang Y, Song B, Yang Z, Gu W. Comprehensive analysis of the systemic transcriptomic alternations and inflammatory response during the occurrence and progress of COVID-19. Oxid Med Cell Longev. 2021;2021:9998697.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.

    Article  CAS  PubMed  Google Scholar 

  12. Vento-Tormo R, Efremova M, Botting RA, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fu Y, Guo Z, Wang Y, et al. Single-nucleus RNA sequencing reveals the shared mechanisms inducing cognitive impairment between COVID-19 and Alzheimer’s disease. Front Immunol. 2022;13: 967356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guan X, Polesso F, Wang C, et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature. 2022;606:791–6.

    Article  CAS  PubMed  Google Scholar 

  15. Van de Sande B, Flerin C, Davie K, et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat Protoc. 2020;15:2247–76.

    Article  PubMed  Google Scholar 

  16. Imrichova H, Hulselmans G, Atak ZK, Potier D, Aerts S. i-cisTarget 2015 update: generalized cis-regulatory enrichment analysis in human, mouse and fly. Nucleic Acids Res. 2015;43:W57-64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gu W, Mo S, Wang Y, et al. Robust validation and comprehensive analysis of a novel signature derived from crucial metabolic pathways of pancreatic ductal adenocarcinoma. Cancers (Basel). 2022. https://doi.org/10.3390/cancers14071825.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mo S, Song B, Wang Y. Transcriptomic analysis and novel gene pair-based signatures for hepatitis B-related hepatocellular carcinoma. Crit Rev Eukaryot Gene Expr. 2021;31:37–53.

    Article  PubMed  Google Scholar 

  19. Galbo PM Jr, Zang X, Zheng D. Molecular features of cancer-associated fibroblast subtypes and their implication on cancer pathogenesis, prognosis, and immunotherapy resistance. Clin Cancer Res. 2021;27:2636–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bischoff P, Trinks A, Obermayer B, et al. Single-cell RNA sequencing reveals distinct tumor microenvironmental patterns in lung adenocarcinoma. Oncogene. 2021;40:6748–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maeser D, Gruener RF, Huang RS. oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief Bioinform. 2021. https://doi.org/10.1093/bib/bbab260.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yang W, Soares J, Greninger P, et al. Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41:D955–61.

    Article  CAS  PubMed  Google Scholar 

  23. Gu W, Kim M, Wang L, Yang Z, Nakajima T, Tsushima Y. Multi-omics analysis of ferroptosis regulation patterns and characterization of tumor microenvironment in patients with oral squamous cell carcinoma. Int J Biol Sci. 2021;17:3476–92.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mao X, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021;20:131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kasashima H, Duran A, Martinez-Ordonez A, et al. Stromal SOX2 upregulation promotes tumorigenesis through the generation of a SFRP1/2-expressing cancer-associated fibroblast population. Dev Cell. 2021;56(95–110): e10.

    Google Scholar 

  26. Affo S, Nair A, Brundu F, et al. Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell. 2021;39(866–82): e11.

    Google Scholar 

  27. Zhuo H, Zhao Y, Cheng X, et al. Tumor endothelial cell-derived cadherin-2 promotes angiogenesis and has prognostic significance for lung adenocarcinoma. Mol Cancer. 2019;18:34.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wu Y, Yang S, Ma J, et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 2022;12:134–53.

    Article  CAS  PubMed  Google Scholar 

  29. Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 2021;18:792–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Janssens R, Struyf S, Proost P. The unique structural and functional features of CXCL12. Cell Mol Immunol. 2018;15:299–311.

    Article  CAS  PubMed  Google Scholar 

  31. Liew FY, Girard JP, Turnquist HR. Interleukin-33 in health and disease. Nat Rev Immunol. 2016;16:676–89.

    Article  CAS  PubMed  Google Scholar 

  32. Marković I, Savvides SN. Modulation of signaling mediated by TSLP and IL-7 in inflammation, autoimmune diseases, and cancer. Front Immunol. 2020;11:1557.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dong Z, Nör JE. Transcriptional targeting of tumor endothelial cells for gene therapy. Adv Drug Deliv Rev. 2009;61:542–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Verdegem D, Moens S, Stapor P, Carmeliet P. Endothelial cell metabolism: parallels and divergences with cancer cell metabolism. Cancer Metab. 2014;2:19.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Heusschen R, Schulkens IA, van Beijnum J, Griffioen AW, Thijssen VL. Endothelial LGALS9 splice variant expression in endothelial cell biology and angiogenesis. Biochem Biophys Acta. 2014;1842:284–92.

    CAS  PubMed  Google Scholar 

  36. Filippou PS, Karagiannis GS, Constantinidou A. Midkine (MDK) growth factor: a key player in cancer progression and a promising therapeutic target. Oncogene. 2020;39:2040–54.

    Article  CAS  PubMed  Google Scholar 

  37. Wieland E, Rodriguez-Vita J, Liebler SS, et al. Endothelial notch1 activity facilitates metastasis. Cancer Cell. 2017;31:355–67.

    Article  CAS  PubMed  Google Scholar 

  38. Mulder K, Patel AA, Kong WT, et al. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity. 2021;54:1883-900.e5.

    Article  CAS  PubMed  Google Scholar 

  39. Yan S, Wan G. Tumor-associated macrophages in immunotherapy. FEBS J. 2021;288:6174–86.

    Article  CAS  PubMed  Google Scholar 

  40. Becker-Santos DD, Thu KL, English JC, et al. Developmental transcription factor NFIB is a putative target of oncofetal miRNAs and is associated with tumour aggressiveness in lung adenocarcinoma. J Pathol. 2016;240:161–72.

    Article  CAS  PubMed  Google Scholar 

  41. Suphakhong K, Terashima M, Wanna-Udom S, et al. m6A RNA methylation regulates the transcription factors JUN and JUNB in TGF-β-induced epithelial-mesenchymal transition of lung cancer cells. J Biol Chem. 2022. https://doi.org/10.1016/j.jbc.2022.102554.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang H, Lu J, Mandel JA, et al. Patient-derived mutant forms of NFE2L2/NRF2 drive aggressive murine hepatoblastomas. Cell Mol Gastroenterol Hepatol. 2021;12:199–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate all our team members at Bioinfo_composer, the leading bioinformatics platform in China, for their selfless help.

Funding

This work was supported by JSPS KAKENHI Grant Number JP22K20814.

Author information

Authors and Affiliations

Authors

Contributions

SCM and WCG analyzed the data and presented the results. WCG designed the research. XS wrote the introduction and discussion of the manuscript. YLW modified the manuscript to the submission format and made a flowchart. YPL and ZCY assisted with the literature search. TS and TN provided suggestions on data analysis. WCG and TN obtained the grant.

Corresponding authors

Correspondence to Shaocong Mo or Wenchao Gu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to retrospective open access cancellation.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 165 KB)

Supplementary file2 (PDF 3097 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, S., Shen, X., Wang, Y. et al. Systematic single-cell dissecting reveals heterogeneous oncofetal reprogramming in the tumor microenvironment of gastric cancer. Human Cell 36, 689–701 (2023). https://doi.org/10.1007/s13577-023-00856-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00856-z

Keywords

Navigation