Skip to main content

Advertisement

Log in

RNF126 contributes to stem cell-like properties and metastasis in hepatocellular carcinoma through ubiquitination and degradation of LKB1

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is one of the malignant tumors with the worst prognosis, and tumor recurrence and metastasis are the main factors leading to poor prognosis of HCC patients. Accumulating studies show that RNF126, ring finger protein 126, is involved in the pathological process of many tumors. However, the biological function and exact molecular mechanism of RNF126 in HCC remain unclear. In this study, we investigated the role of RNF126 in the pathogenesis of HCC. By analyzing database and verifying with our clinical specimens, it was found that RNF126 was highly expressed in HCC tissues, which is associated with shorter overall survival and higher recurrence rate. Overexpressed RNF126 can significantly promote the proliferation, migration, invasion and angiogenesis of HCC cells, whereas knockdown RNF126 can reverse this effect. Mechanically, RNF126 down-regulates liver kinase B1 (LKB1) expression by ubiquitination of LKB1 to weaken its stability, thereby significantly promoting stem-cell-like activity, migration, and angiogenesis of HCC. Notably, consistent with in vitro results, RNF126 was stably transformed in Hep3B and subcutaneously injected into nude mice. In established mouse xenograft models, tumor growth can be effectively inhibited and the occurrence of lung metastasis is reduced. In HCC, RNF126 may down-regulate LKB1 through ubiquitination, thus becoming a powerful prognostic biomarker and a recognized tumor suppressor. Therefore, our study may provide a promising new therapeutic strategy for targeting RNF126 for HCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  2. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604. https://doi.org/10.1038/s41575-019-0186-y.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. https://doi.org/10.3322/caac.21442.

    Article  PubMed  Google Scholar 

  4. Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389(10064):56–66. https://doi.org/10.1016/S0140-6736(16)32453-9.

    Article  CAS  PubMed  Google Scholar 

  5. Huang J, Lok V, Ngai CH, Zhang L, Yuan J, Lao XQ, et al. Worldwide burden of, risk factors for, and trends in pancreatic cancer. Gastroenterology. 2021;160(3):744–54. https://doi.org/10.1053/j.gastro.2020.10.007.

    Article  PubMed  Google Scholar 

  6. Torimura T, Iwamoto H. Treatment and the prognosis of hepatocellular carcinoma in Asia. Liver Int. 2021. https://doi.org/10.1111/liv.15130.

    Article  PubMed  Google Scholar 

  7. Chen Q, Shu C, Laurence AD, Chen Y, Peng BG, Zhen ZJ, et al. Effect of Huaier granule on recurrence after curative resection of HCC: a multicentre, randomised clinical trial. Gut. 2018;67(11):2006–16. https://doi.org/10.1136/gutjnl-2018-315983.

    Article  CAS  PubMed  Google Scholar 

  8. Ciechanover A. The unravelling of the ubiquitin system. Nat Rev Mol Cell Biol. 2015;16(5):322–4. https://doi.org/10.1038/nrm3982.

    Article  CAS  PubMed  Google Scholar 

  9. Nakayama KI, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 2006;6(5):369–81. https://doi.org/10.1038/nrc1881.

    Article  CAS  PubMed  Google Scholar 

  10. Lee NS, Chang HR, Kim S, Ji JH, Lee J, Lee HJ, et al. Ring finger protein 126 (RNF126) suppresses ionizing radiation-induced p53-binding protein 1 (53BP1) focus formation. J Biol Chem. 2018;293(2):588–98. https://doi.org/10.1074/jbc.M116.765602.

    Article  CAS  PubMed  Google Scholar 

  11. Yang X, Pan Y, Qiu Z, Du Z, Zhang Y, Fa P, et al. RNF126 as a biomarker of a poor prognosis in invasive breast cancer and CHEK1 inhibitor efficacy in breast cancer cells. Clin Cancer Res. 2018;24(7):1629–43. https://doi.org/10.1158/1078-0432.CCR-17-2242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kamikubo K, Kato H, Kioka H, Yamazaki S, Tsukamoto O, Nishida Y, et al. A molecular triage process mediated by RING finger protein 126 and BCL2-associated athanogene 6 regulates degradation of G0/G1 switch gene 2. J Biol Chem. 2019;294(40):14562–73. https://doi.org/10.1074/jbc.RA119.008544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith CJ, Berry DM, McGlade CJ. The E3 ubiquitin ligases RNF126 and Rabring7 regulate endosomal sorting of the epidermal growth factor receptor. J Cell Sci. 2013;126(Pt 6):1366–80. https://doi.org/10.1242/jcs.116129.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang R, Liu W, Sun J, Kong Y, Chen C. Roles of RNF126 and BCA2 E3 ubiquitin ligases in DNA damage repair signaling and targeted cancer therapy. Pharmacol Res. 2020;155: 104748. https://doi.org/10.1016/j.phrs.2020.104748.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang R, Zhu Y, Li Y, Liu W, Yin L, Yin S, et al. Human umbilical cord mesenchymal stem cell exosomes alleviate sepsis-associated acute kidney injury via regulating microRNA-146b expression. Biotechnol Lett. 2020;42(4):669–79. https://doi.org/10.1007/s10529-020-02831-2.

    Article  CAS  PubMed  Google Scholar 

  16. He X, Ai S, Guo W, Yang Y, Wang Z, Jiang D, et al. Umbilical cord-derived mesenchymal stem (stromal) cells for treatment of severe sepsis: a phase 1 clinical trial. Transl Res. 2018;199:52–61. https://doi.org/10.1016/j.trsl.2018.04.006.

    Article  PubMed  Google Scholar 

  17. Zhi X, Zhao D, Wang Z, Zhou Z, Wang C, Chen W, et al. E3 ubiquitin ligase RNF126 promotes cancer cell proliferation by targeting the tumor suppressor p21 for ubiquitin-mediated degradation. Cancer Res. 2013;73(1):385–94. https://doi.org/10.1158/0008-5472.CAN-12-0562.

    Article  CAS  PubMed  Google Scholar 

  18. Wang C, Wen A, Qiao J, Liu Y, Guo Y, Wang W. High expression of RING finger protein 126 predicts unfavorable prognosis of epithelial ovarian cancer. Med Sci Monit. 2020;26:e921370. https://doi.org/10.12659/MSM.921370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu H, Ju L, Xiong Y, Yu M, Zhou F, Qian K, et al. E3 ubiquitin ligase RNF126 affects bladder cancer progression through regulation of PTEN stability. Cell Death Dis. 2021;12(3):239. https://doi.org/10.1038/s41419-021-03521-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer. 2009;9(8):563–75. https://doi.org/10.1038/nrc2676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hollstein PE, Eichner LJ, Brun SN, Kamireddy A, Svensson RU, Vera LI, et al. The AMPK-related kinases SIK1 and SIK3 mediate key tumor-suppressive effects of LKB1 in NSCLC. Cancer Discov. 2019;9(11):1606–27. https://doi.org/10.1158/2159-8290.CD-18-1261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bi L, Ren Y, Feng M, Meng P, Wang Q, Chen W, et al. HDAC11 regulates glycolysis through the LKB1/AMPK signaling pathway to maintain hepatocellular carcinoma stemness. Cancer Res. 2021;81(8):2015–28. https://doi.org/10.1158/0008-5472.CAN-20-3044.

    Article  CAS  PubMed  Google Scholar 

  23. Liu X, Sui X, Zhang C, Wei K, Bao Y, Xiong J, et al. Glutathione S-transferase A1 suppresses tumor progression and indicates better prognosis of human primary hepatocellular carcinoma. J Cancer. 2020;11(1):83–91. https://doi.org/10.7150/jca.36495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li N, Wang Y, Neri S, Zhen Y, Fong LWR, Qiao Y, et al. Tankyrase disrupts metabolic homeostasis and promotes tumorigenesis by inhibiting LKB1-AMPK signalling. Nat Commun. 2019;10(1):4363. https://doi.org/10.1038/s41467-019-12377-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. World Medical A. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–4. https://doi.org/10.1001/jama.2013.281053.

    Article  CAS  Google Scholar 

  26. Chen H, Zhang L. Downregulation of FPR1 abates lipopolysaccharide-induced inflammatory injury and apoptosis by upregulating MAPK signaling pathway in murine chondrogenic ATDC5 cells. Allergol Immunopathol (Madr). 2021;49(5):57–63. https://doi.org/10.15586/aei.v49i5.455.

    Article  Google Scholar 

  27. He Y, Li Q, Zhou W, Gu Y, Jiang Y. Coniferyl aldehyde alleviates LPS-induced WI-38 cell apoptosis and inflammation injury via JAK2-STAT1 pathway in acute pneumonia. Allergol Immunopathol (Madr). 2021;49(5):72–7. https://doi.org/10.15586/aei.v49i5.464.

    Article  Google Scholar 

  28. Bai S, Chen W, Zheng M, Wang X, Peng W, Zhao Y, et al. Spindle and kinetochore-associated complex subunit 3 (SKA3) promotes stem cell-like properties of hepatocellular carcinoma cells through activating Notch signaling pathway. Ann Transl Med. 2021;9(17):1361. https://doi.org/10.21037/atm-21-1572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang S, Wang L, Hu H, Dong P. MiR-224 ameliorates inflammation and symptoms in mouse model of allergic rhinitis by targeting CDK9. Allergol Immunopathol (Madr). 2021;49(6):80–8. https://doi.org/10.15586/aei.v49i6.451.

    Article  Google Scholar 

  30. Luo J, Wang P, Wang R, Wang J, Liu M, Xiong S, et al. The Notch pathway promotes the cancer stem cell characteristics of CD90+ cells in hepatocellular carcinoma. Oncotarget. 2016;7(8):9525–37. https://doi.org/10.18632/oncotarget.6672.

    Article  PubMed  Google Scholar 

  31. In: th, editor. Guide for the Care and Use of Laboratory Animals. The National Academies Collection: Reports funded by National Institutes of Health. Washington (DC) 2011.

  32. Zhou C, Liu C, Liu W, Chen W, Yin Y, Li CW, et al. SLFN11 inhibits hepatocellular carcinoma tumorigenesis and metastasis by targeting RPS4X via mTOR pathway. Theranostics. 2020;10(10):4627–43. https://doi.org/10.7150/thno.42869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lytle NK, Barber AG, Reya T. Stem cell fate in cancer growth, progression and therapy resistance. Nat Rev Cancer. 2018;18(11):669–80. https://doi.org/10.1038/s41568-018-0056-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8(10):755–68. https://doi.org/10.1038/nrc2499.

    Article  CAS  PubMed  Google Scholar 

  35. Yaghobi Z, Movassaghpour A, Talebi M, Abdoli Shadbad M, Hajiasgharzadeh K, Pourvahdani S, et al. The role of CD44 in cancer chemoresistance: a concise review. Eur J Pharmacol. 2021;903: 174147. https://doi.org/10.1016/j.ejphar.2021.174147.

    Article  CAS  PubMed  Google Scholar 

  36. Liu T, Duan X, He J, Yang C. KCNQ1OT1 promotes the proliferation and migration of psoriatic keratinocytes by regulating miR-183–3p/GAB1. Allergol Immunopathol (Madr). 2021;49(5):125–30. https://doi.org/10.15586/aei.v49i5.480.

    Article  Google Scholar 

  37. Yu X, Zheng Y, Zhu X, Gao X, Wang C, Sheng Y, et al. Osteopontin promotes hepatocellular carcinoma progression via the PI3K/AKT/Twist signaling pathway. Oncol Lett. 2018;16(4):5299–308. https://doi.org/10.3892/ol.2018.9281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hartke J, Johnson M, Ghabril M. The diagnosis and treatment of hepatocellular carcinoma. Semin Diagn Pathol. 2017;34(2):153–9. https://doi.org/10.1053/j.semdp.2016.12.011.

    Article  PubMed  Google Scholar 

  39. Sun Z, Liu X, Chen M, Zhang H, Zeng X. Overexpression of RNF126 is associated with poor prognosis and contributes to the progression of lung adenocarcinoma. Biomark Med. 2021;15(15):1345–55. https://doi.org/10.2217/bmm-2020-0798.

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Chu Y, Li K, Zhang G, Guo Z, Wu X, et al. Exosomes secreted by adipose-derived mesenchymal stem cells foster metastasis and osteosarcoma proliferation by increasing COLGALT2 expression. Front Cell Dev Biol. 2020;8:353. https://doi.org/10.3389/fcell.2020.00353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li H, Feng Z, He ML. Lipid metabolism alteration contributes to and maintains the properties of cancer stem cells. Theranostics. 2020;10(16):7053–69. https://doi.org/10.7150/thno.41388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yan Y, Zuo X, Wei D. Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med. 2015;4(9):1033–43. https://doi.org/10.5966/sctm.2015-0048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kawaguchi M, Dashzeveg N, Cao Y, Jia Y, Liu X, Shen Y, et al. Extracellular Domains I and II of cell-surface glycoprotein CD44 mediate its trans-homophilic dimerization and tumor cluster aggregation. J Biol Chem. 2020;295(9):2640–9. https://doi.org/10.1074/jbc.RA119.010252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhong L, Pan Y, Shen J. FBXW7 inhibits invasion, migration and angiogenesis in ovarian cancer cells by suppressing VEGF expression through inactivation of beta-catenin signaling. Exp Ther Med. 2021;21(5):514. https://doi.org/10.3892/etm.2021.9945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Whynott RM, Manahan P, Geisler JP. Vascular endothelial growth factor (VEGF) and cyclooxygenase 2 (COX 2) immunostaining in ovarian cancer. Eur J Gynaecol Oncol. 2016;37(2):164–6.

    CAS  PubMed  Google Scholar 

  46. Klein CA. Cancer progression and the invisible phase of metastatic colonization. Nat Rev Cancer. 2020;20(11):681–94. https://doi.org/10.1038/s41568-020-00300-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the Yunnan Science and Technology Department and Kunming Medical University Special Fund (Grant No. 202001AY070001-229), the Yun nan Fundamental Research Projects (Grant No. 202101AT070239) and the Investigator Initiated Trail Projects of the Second Affiliated Hospital of Kunming Medical University (Grant No. 2020ynlc004).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and the experiments were performed by JH. Data collection and analysis were performed by YL, MZ and HH. The first draft of the manuscript was written by DX and DT and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jie Huang.

Ethics declarations

Conflicts of interest

The authors state that there are no conflicts of interest to disclose.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the standards upheld by the Ethics Committee of the Second Affiliated Hospital of Kunming Medical University and with those of the 1964 Helsinki Declaration and its later amendments for ethical research involving human subjects. All animal experiments were approved by the Ethics Committee of the Second Affiliated Hospital of Kunming Medical University for the use of animals and conducted in accordance with the National Institutes of Health Laboratory Animal Care and Use Guidelines(Approval No.kmmu20200411).

Statement of informed consent

Written informed consent was obtained from a legally authorized representative(s) for anonymized patient information to be published in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Li, Y., Zheng, M. et al. RNF126 contributes to stem cell-like properties and metastasis in hepatocellular carcinoma through ubiquitination and degradation of LKB1. Human Cell 35, 1869–1884 (2022). https://doi.org/10.1007/s13577-022-00782-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00782-6

Keywords

Navigation