Skip to main content

Advertisement

Log in

Long non‑coding RNA PART1: dual role in cancer

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Increasing evidence has shown that long non-coding RNAs (lncRNAs), which are non-coding endogenous single-stranded RNAs, play an essential role in various physiological and pathological processes through transcriptional interference, post-transcriptional regulation, and epigenetic modification. Moreover, lncRNAs, as oncogenes or tumor suppressor genes, play an important role in the occurrence and development of human cancers. Prostate androgen-regulated transcript 1 (PART1) was initially identified as a carcinogenic lncRNA in prostate adenomas. The upregulated expression of PART1 plays a tumor-promoting role in liver, prostate, lung cancers, and other tumors. In contrast, the expression of PART1 is downregulated in esophageal squamous cell carcinoma, glioma, and other tumors, which may inhibit the tumor. PART1 plays a dual role in cancer and regulates cell proliferation, apoptosis, invasion, and metastasis through a variety of potential mechanisms. These findings suggest that PART1 is a promising tumor biomarker and therapeutic target. This article reviews the biological functions, related mechanisms, and potential clinical significance of PART1 in a variety of human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel RL, et al. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

    Article  PubMed  Google Scholar 

  2. Bugter JM, Fenderico N, Maurice MM. Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat Rev Cancer. 2021;21(1):5–21.

    Article  CAS  PubMed  Google Scholar 

  3. Chang WH, Lai AG. An immunoevasive strategy through clinically-relevant pan-cancer genomic and transcriptomic alterations of JAK-STAT signaling components. Mol Med. 2019;25(1):46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Peng X, et al. A-to-I RNA editing contributes to proteomic diversity in cancer. Cancer Cell. 2018;33(5):817-828.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sreekumar A, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457(7231):910–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18(1):5–18.

    Article  CAS  PubMed  Google Scholar 

  7. Fu D, et al. Targeting long non-coding RNA to therapeutically regulate gene expression in cancer. Mol Ther Nucleic Acids. 2020;21:712–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172(3):393–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen LL. Linking long noncoding RNA localization and function. Trends Biochem Sci. 2016;41(9):761–72.

    Article  CAS  PubMed  Google Scholar 

  10. Ulitsky I. Interactions between short and long noncoding RNAs. FEBS Lett. 2018;592(17):2874–83.

    Article  CAS  PubMed  Google Scholar 

  11. Ma Y, et al. Membrane-lipid associated lncRNA: a new regulator in cancer signaling. Cancer Lett. 2018;419:27–9.

    Article  CAS  PubMed  Google Scholar 

  12. Peng WX, Koirala P, Mo YY. LncRNA-mediated regulation of cell signaling in cancer. Oncogene. 2017;36(41):5661–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang L, et al. Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int J Mol Sci. 2019;20(22):5758.

    Article  CAS  PubMed Central  Google Scholar 

  14. Ni W, et al. A novel lncRNA uc.134 represses hepatocellular carcinoma progression by inhibiting CUL4A-mediated ubiquitination of LATS1. J Hematol Oncol. 2017;10(1):91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lin B, et al. PART-1: a novel human prostate-specific, androgen-regulated gene that maps to chromosome 5q12. Cancer Res. 2000;60(4):858–63.

    CAS  PubMed  Google Scholar 

  16. Zhang Z, et al. Role of lncRNA PART1 in intervertebral disc degeneration and associated underlying mechanism. Exp Ther Med. 2021;21(2):131.

    Article  PubMed  CAS  Google Scholar 

  17. Zhu YJ, Jiang DM. LncRNA PART1 modulates chondrocyte proliferation, apoptosis, and extracellular matrix degradation in osteoarthritis via regulating miR-373-3p/SOX4 axis. Eur Rev Med Pharmacol Sci. 2019;23(19):8175–85.

    PubMed  Google Scholar 

  18. Shen Y, et al. lncRNA PART1 mitigates MPP(+)-induced neuronal injury in SH-SY5Y cells via micRNA-106b-5p/MCL1 axis. Am J Transl Res. 2021;13(8):8897–908.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pu J, et al. Long noncoding RNA PART1 promotes hepatocellular carcinoma progression via targeting miR-590-3p/HMGB2 axis. Onco Targets Ther. 2020;13:9203–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou C, et al. Long non-coding RNA PART1 promotes proliferation, migration and invasion of hepatocellular carcinoma cells via miR-149-5p/MAP2K1 axis. Cancer Manag Res. 2020;12:3771–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou J, et al. Tumor-derived extracellular vesicles containing long noncoding RNA PART1 exert oncogenic effect in hepatocellular carcinoma by polarizing macrophages into M2. Dig Liver Dis. 2021;54(543):553.

    Google Scholar 

  22. Hu Y, et al. PART-1 functions as a competitive endogenous RNA for promoting tumor progression by sponging miR-143 in colorectal cancer. Biochem Biophys Res Commun. 2017;490(2):317–23.

    Article  CAS  PubMed  Google Scholar 

  23. Lou T, et al. LncRNA PART1 facilitates the malignant progression of colorectal cancer via miR-150-5p/LRG1 axis. J Cell Biochem. 2020;121(10):4271–81.

    Article  CAS  PubMed  Google Scholar 

  24. Zhou T, et al. LncRNA PART1 regulates colorectal cancer via targeting miR-150-5p/miR-520h/CTNNB1 and activating Wnt/β-catenin pathway. Int J Biochem Cell Biol. 2020;118: 105637.

    Article  CAS  PubMed  Google Scholar 

  25. Hu X, et al. Long non-coding RNA PART1 predicts a poor prognosis and promotes the malignant progression of pancreatic cancer by sponging miR-122. World J Surg Oncol. 2021;19(1):122.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sun M, et al. LncRNA PART1 modulates toll-like receptor pathways to influence cell proliferation and apoptosis in prostate cancer cells. Biol Chem. 2018;399(4):387–95.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou M, et al. Computational recognition of lncRNA signature of tumor-infiltrating B lymphocytes with potential implications in prognosis and immunotherapy of bladder cancer. Brief Bioinform. 2021. https://doi.org/10.1093/bib/bbaa047.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hu X, et al. Downregulated long noncoding RNA PART1 inhibits proliferation and promotes apoptosis in bladder cancer. Technol Cancer Res Treat. 2019;18:1533033819846638.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang H, et al. YY1-induced lncRNA PART1 enhanced resistance of ovarian cancer cells to cisplatin by regulating miR-512-3p/CHRAC1 axis. DNA Cell Biol. 2021;40(6):821–32.

    Article  CAS  PubMed  Google Scholar 

  30. Li B, et al. Repression of lncRNA PART1 attenuates ovarian cancer cell viability, migration and invasion through the miR-503-5p/FOXK1 axis. BMC Cancer. 2022;22(1):124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu H, et al. lncRNA PART1 and MIR17HG as ΔNp63α direct targets regulate tumor progression of cervical squamous cell carcinoma. Cancer Sci. 2020;111(11):4129–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen Y, et al. LncRNA PART1 promotes cell proliferation and progression in non-small-cell lung cancer cells via sponging miR-17-5p. J Cell Biochem. 2021;122(3–4):315–25.

    Article  CAS  PubMed  Google Scholar 

  33. Cao Y, et al. LncRNA PART1 promotes lung squamous cell carcinoma progression via miR-185-5p/Six1 axis. Hum Exp Toxicol. 2021;40(6):960–76.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu D, et al. Long noncoding RNA PART1 promotes progression of non-small cell lung cancer cells via JAK-STAT signaling pathway. Cancer Med. 2019;8(13):6064–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li M, et al. PART1 expression is associated with poor prognosis and tumor recurrence in stage I-III non-small cell lung cancer. J Cancer. 2017;8(10):1795–800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wang Z, Xu R. lncRNA PART1 promotes breast cancer cell progression by directly targeting miR-4516. Cancer Manag Res. 2020;12:7753–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang L, Zhang J, Ni C. Silencing of lncRNA PART1 inhibits proliferation, invasion and migration of breast cancer cells and promotes the efficacy of cisplatin in breast cancer cells. Gen Physiol Biophys. 2020;39(4):343–54.

    Article  CAS  PubMed  Google Scholar 

  38. Cruickshank BM, et al. LncRNA PART1 promotes proliferation and migration, is associated with cancer stem cells, and alters the miRNA landscape in triple-negative breast cancer. Cancers (Basel). 2021;13(11):2644.

    Article  CAS  Google Scholar 

  39. Yu Q, et al. LncRNA PART1 promotes cell proliferation and inhibits apoptosis of oral squamous cell carcinoma by blocking EZH2 degradation. J Biochem. 2021;169(6):721–30.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Y, et al. lncRNA PART1, manipulated by transcriptional factor FOXP2, suppresses proliferation and invasion in ESCC by regulating the miR-18a-5p/SOX6 signaling axis. Oncol Rep. 2021;45(3):1118–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xuan C, et al. PART1 and hsa-miR-429-mediated SHCBP1 expression is an independent predictor of poor prognosis in glioma patients. Biomed Res Int. 2020;2020:1767056.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Jin Z, et al. Long non-coding RNA PART1 exerts tumor suppressive functions in glioma via sponging miR-190a-3p and inactivation of PTEN/AKT pathway. Onco Targets Ther. 2020;13:1073–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao X, et al. LncRNA PART1 exerts tumor-suppressive functions in tongue squamous cell carcinoma via miR-503-5p. Onco Targets Ther. 2020;13:9977–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang S, et al. Comprehensive analysis of lncRNA-associated competing endogenous RNA network in tongue squamous cell carcinoma. PeerJ. 2019;7: e6397.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Han H, et al. Long noncoding RNA PART1 restrains aggressive gastric cancer through the epigenetic silencing of PDGFB via the PLZF-mediated recruitment of EZH2. Oncogene. 2020;39(42):6513–28.

    Article  CAS  PubMed  Google Scholar 

  46. Sung H, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  47. Llovet JM, et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021;18(5):293–313.

    Article  CAS  PubMed  Google Scholar 

  48. Llovet JM, et al. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15(10):599–616.

    Article  PubMed  Google Scholar 

  49. Lv Y, et al. Long non-coding RNA expression profile can predict early recurrence in hepatocellular carcinoma after curative resection. Hepatol Res. 2018;48(13):1140–8.

    Article  CAS  PubMed  Google Scholar 

  50. Ye J, et al. Integrated analysis of a competing endogenous RNA network reveals key long noncoding RNAs as potential prognostic biomarkers for hepatocellular carcinoma. J Cell Biochem. 2019;120(8):13810–25.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou Y, et al. LRG1 promotes proliferation and inhibits apoptosis in colorectal cancer cells via RUNX1 activation. PLoS ONE. 2017;12(4): e0175122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wu H, et al. TRAF6 inhibits colorectal cancer metastasis through regulating selective autophagic CTNNB1/β-catenin degradation and is targeted for GSK3B/GSK3β-mediated phosphorylation and degradation. Autophagy. 2019;15(9):1506–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  PubMed  Google Scholar 

  54. Zeng S, et al. Chemoresistance in Pancreatic Cancer. Int J Mol Sci. 2019;20(18):4504.

    Article  CAS  PubMed Central  Google Scholar 

  55. Tempero MA. NCCN guidelines updates: pancreatic cancer. J Natl Compr Canc Netw. 2019;17(5 5):603–5.

    CAS  PubMed  Google Scholar 

  56. Xiao Y, et al. Five novel genes related to the pathogenesis and progression of pancreatic neuroendocrine tumors by bioinformatics analysis with RT-qPCR verification. Front Neurosci. 2019;13:937.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Center MM, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol. 2012;61(6):1079–92.

    Article  PubMed  Google Scholar 

  58. Bray F, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  59. Sidiropoulos M, et al. Expression and regulation of prostate androgen regulated transcript-1 (PART-1) and identification of differential expression in prostatic cancer. Br J Cancer. 2001;85(3):393–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu L, Blackburn GL, Zhou JR. Genistein and daidzein downregulate prostate androgen-regulated transcript-1 (PART-1) gene expression induced by dihydrotestosterone in human prostate LNCaP cancer cells. J Nutr. 2003;133(2):389–92.

    Article  CAS  PubMed  Google Scholar 

  61. Li Y, et al. Non-coding RNA in bladder cancer. Cancer Lett. 2020;485:38–44.

    Article  CAS  PubMed  Google Scholar 

  62. Li H, et al. SUZ12 promotes human epithelial ovarian cancer by suppressing apoptosis via silencing HRK. Mol Cancer Res. 2012;10(11):1462–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao Y, Hong L. lncRNA-PRLB confers paclitaxel resistance of ovarian cancer cells by regulating RSF1/NF-κB signaling pathway. Cancer Biother Radiopharm. 2021;36(2):202–10.

    Article  PubMed  CAS  Google Scholar 

  64. Narod S. Can advanced-stage ovarian cancer be cured? Nat Rev Clin Oncol. 2016;13(4):255–61.

    Article  CAS  PubMed  Google Scholar 

  65. Dillman RO, et al. Dendritic versus tumor cell presentation of autologous tumor antigens for active specific immunotherapy in metastatic melanoma: impact on long-term survival by extent of disease at the time of treatment. Cancer Biother Radiopharm. 2015;30(5):187–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tan J. Targeting resistance. Cell. 2016;166(3):523.

    Article  CAS  PubMed  Google Scholar 

  67. Tsikouras P, et al. Cervical cancer: screening, diagnosis and staging. J buon. 2016;21(2):320–5.

    PubMed  Google Scholar 

  68. Hirsch FR, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389(10066):299–311.

    Article  CAS  PubMed  Google Scholar 

  69. Borghaei H, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu Z, et al. Downregulation of oncogenic gene TGFβR2 by miRNA-107 suppresses non-small cell lung cancer. Pathol Res Pract. 2020;216(1): 152690.

    Article  CAS  PubMed  Google Scholar 

  71. Relli V, et al. Abandoning the notion of non-small cell lung cancer. Trends Mol Med. 2019;25(7):585–94.

    Article  PubMed  Google Scholar 

  72. Hu Z, et al. A tyrosine phosphatase SHP2 gain-of-function mutation enhances malignancy of breast carcinoma. Oncotarget. 2016;7(5):5664–76.

    Article  PubMed  Google Scholar 

  73. DeSantis C, et al. Breast cancer statistics, 2013. CA Cancer J Clin. 2014;64(1):52–62.

    Article  PubMed  Google Scholar 

  74. Sasahira T, Kirita T. Hallmarks of cancer-related newly prognostic factors of oral squamous cell carcinoma. Int J Mol Sci. 2018;19(8):2413.

    Article  PubMed Central  CAS  Google Scholar 

  75. Chi AC, Day TA, Neville BW. Oral cavity and oropharyngeal squamous cell carcinoma–an update. CA Cancer J Clin. 2015;65(5):401–21.

    Article  PubMed  Google Scholar 

  76. Zheng M, et al. EZH2 promotes invasion and tumour glycolysis by regulating STAT3 and FoxO1 signalling in human OSCC cells. J Cell Mol Med. 2019;23(10):6942–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Abnet CC, Arnold M, Wei WQ. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology. 2018;154(2):360–73.

    Article  PubMed  Google Scholar 

  78. Herskovic A, et al. Esophageal carcinoma advances in treatment results for locally advanced disease: review. Ann Oncol. 2012;23(5):1095–103.

    Article  CAS  PubMed  Google Scholar 

  79. Hara F, et al. Antitumor effect of gefitinib ('Iressa’) on esophageal squamous cell carcinoma cell lines in vitro and in vivo. Cancer Lett. 2005;226(1):37–47.

    Article  CAS  PubMed  Google Scholar 

  80. Kang M, et al. Exosome-mediated transfer of lncRNA PART1 induces gefitinib resistance in esophageal squamous cell carcinoma via functioning as a competing endogenous RNA. J Exp Clin Cancer Res. 2018;37(1):171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults. Lancet. 2018;392(10145):432–46.

    Article  PubMed  Google Scholar 

  82. Buonerba C, et al. A comprehensive outlook on intracerebral therapy of malignant gliomas. Crit Rev Oncol Hematol. 2011;80(1):54–68.

    Article  PubMed  Google Scholar 

  83. Reichenbach ZW, et al. Clinical and translational advances in esophageal squamous cell carcinoma. Adv Cancer Res. 2019;144:95–135.

    Article  CAS  PubMed  Google Scholar 

  84. Song Y, Pan Y, Liu J. Functional analysis of lncRNAs based on competitive endogenous RNA in tongue squamous cell carcinoma. PeerJ. 2019;7: e6991.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Zhao Z, et al. Low NR3C2 levels correlate with aggressive features and poor prognosis in non-distant metastatic clear-cell renal cell carcinoma. J Cell Physiol. 2018;233(10):6825–38.

    Article  CAS  PubMed  Google Scholar 

  86. Smyth EC, et al. Gastric cancer. Lancet. 2020;396(10251):635–48.

    Article  CAS  PubMed  Google Scholar 

  87. Gu W, et al. Comprehensive analysis of expression profiles of long non-coding RNAs with associated ceRNA network involved in gastric cancer progression. Mol Med Rep. 2019;20(3):2209–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee C, Kikyo N. Strategies to identify long noncoding RNAs involved in gene regulation. Cell Biosci. 2012;2(1):37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Iams WT, et al. Improved prognosis and increased tumor-infiltrating lymphocytes in patients who have SCLC with neurologic paraneoplastic syndromes. J Thorac Oncol. 2019;14(11):1970–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gupta P, et al. B cells as an immune-regulatory signature in ovarian cancer. Cancers (Basel). 2019;11(7):894.

    Article  CAS  Google Scholar 

  92. Wahlin S, et al. Clinical impact of T cells, B cells and the PD-1/PD-L1 pathway in muscle invasive bladder cancer: a comparative study of transurethral resection and cystectomy specimens. Oncoimmunology. 2019;8(11): e1644108.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No.31960175); Gansu Youth Science and Technology Fund (20JR10RA752); Gansu Key R&D Program (21YF5FA125); Lanzhou talent innovation and entrepreneurship project (2021-RC-99).

Author information

Authors and Affiliations

Authors

Contributions

H-HZ: worked on the design and conception of this review. RR and C-YG: collected the data and drafted the manuscript. Z-QW: contributed to revising the paper. W-MZ, S-BZ, and Y-QS: created the tables and figures. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hai-Hong Zhang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, R., Gong, CY., Wang, ZQ. et al. Long non‑coding RNA PART1: dual role in cancer. Human Cell 35, 1364–1374 (2022). https://doi.org/10.1007/s13577-022-00752-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00752-y

Keywords

Navigation