Skip to main content

Advertisement

Log in

Long non-coding RNA LBX2-AS1 predicts poor survival of colon cancer patients and promotes its progression via regulating miR-627-5p/RAC1/PI3K/AKT pathway

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Colon cancer is one of the most prevalent malignant tumors across the world. Increasing studies have demonstrated that long non-coding RNAs (lncRNAs) take part in colon cancer development. Our study intends to explore the expression characteristics of LBX2-AS1, a novel lncRNA, in colon cancer and its underlying mechanisms. The results illustrated that LBX2-AS1 level was substantially increased in colon cancer tissues and was obviously correlated with the tumor volume and early distant metastasis of patients. Besides, overexpression of LBX2-AS1 remarkably boosted growth, proliferation, and metastasis and restrained apoptosis in colon cancer cells, whereas LBX2-AS1 knockdown produced the opposite effect. On the other hand, miR-627-5p, down-regulated in colon cancer tissues, was negatively associated with LBX2-AS1 expression. Functional experiments showed that miR-627-5p suppressed colon cancer growth. Mechanistically, LBX2-AS1, as an endogenous competitive RNA, targeted miR-627-5p and restrained its expression, while miR-627-5p targeted and negatively regulated the RAC1/PI3K/AKT axis. Collectively, this study has revealed that LBX2-AS1 is a poor prognostic factor of colon cancer and can regulate colon cancer progression by regulating the miR-627-5p/RAC1/PI3K/AKT pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The data sets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Seetha A, Devaraj H, Sudhandiran G. Indomethacin and juglone inhibit inflammatory molecules to induce apoptosis in colon cancer cells. J Biochem Mol Toxicol. 2020;34(2): e22433.

    Article  CAS  Google Scholar 

  2. Song M, Chan AT, Sun J. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer. Gastroenterology. 2020;158(2):322–40. https://doi.org/10.1053/j.gastro.2019.06.048.

    Article  CAS  PubMed  Google Scholar 

  3. Tsuji Y, Sugihara K. Adjuvant chemotherapy for colon cancer: the difference between Japanese and western strategies. Expert Opin Pharmacother. 2016;17(6):783–90.

    Article  CAS  Google Scholar 

  4. Peng WX, Koirala P, Mo YY. LncRNA-mediated regulation of cell signaling in cancer. Oncogene. 2017;36(41):5661–7.

    Article  CAS  Google Scholar 

  5. Renganathan A, Felley-Bosco E. Long noncoding RNAs in cancer and therapeutic potential. Adv Exp Med Biol. 2017;1008:199–222.

    Article  CAS  Google Scholar 

  6. Zhenqin L, Peiguo C. Long noncoding RNA PVT1 promotes hepatoblastoma cell proliferation through activating STAT3. Cancer Manag Res. 2019;11:8517–27.

    Article  Google Scholar 

  7. Ye Z, Rui S, Yi C, et al. Long noncoding RNA MT1JP inhibits proliferation, invasion, and migration while promoting apoptosis of glioma cells through the activation of PTEN/Akt signaling pathway. J Cell Physiol. 2019;234:19553–64.

    Article  Google Scholar 

  8. Fan Wu, Zheng Z, Ruichao C, et al. Expression profile analysis of antisense long non-coding RNA identifies WDFY3-AS2 as a prognostic biomarker in diffuse glioma. Cancer Cell Int. 2018;18:107.

    Article  Google Scholar 

  9. Yang Z, Dong X, Pu M, et al. LBX2-AS1/miR-219a-2-3p/FUS/LBX2 positive feedback loop contributes to the proliferation of gastric cancer. Gastric Cancer. 2020;23(3):449–63.

    Article  CAS  Google Scholar 

  10. Yanshan Z, Weizuo C, Tingting P, et al. LBX2-AS1 is activated by ZEB1 and promotes the development of esophageal squamous cell carcinoma by interacting with HNRNPC to enhance the stability of ZEB1 and ZEB2 mRNAs. Biochem Biophys Res Commun. 2019;511:566–72.

    Article  Google Scholar 

  11. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–22.

    Article  CAS  Google Scholar 

  12. Kun Q, Shipeng N, Lin W, et al. LINC00673 is activated by YY1 and promotes the proliferation of breast cancer cells via the miR-515-5p/MARK4/Hippo signaling pathway. J Exp Clin Cancer Res. 2019;38:418.

    Article  Google Scholar 

  13. Xu C, Li S, Chen T, Hu H, Ding C, Xu Z, Chen J, Liu Z, Lei Z, Zhang HT, Li C, Zhao J. miR-296-5p suppresses cell viability by directly targeting PLK1 in non-small cell lung cancer. Oncol Rep. 2016;35(1):497–503.

    Article  CAS  Google Scholar 

  14. Wang J, Chen T, Wang L, et al. MicroRNA-627-5p inhibits the proliferation of hepatocellular carcinoma cells by targeting BCL3 transcription coactivator. Clin Exp Pharmacol Physiol. 2020;47(3):485–94.

    Article  Google Scholar 

  15. Fuyang C, Liu M, Yixiu Y, et al. LINC00958 regulated miR-627-5p/YBX2 axis to facilitate cell proliferation and migration in oral squamous cell carcinoma. Cancer Biol. 2019;20:1270–80.

    Article  Google Scholar 

  16. Ze Ji, Xing P, Yan S, et al. KIF18B as a regulator in microtubule movement accelerates tumor progression and triggers poor outcome in lung adenocarcinoma. Tissue Cell. 2019;61:44–50.

    Article  Google Scholar 

  17. Wenlan Q, Dong Li, Qing S, et al. miR-224-5p protects dental pulp stem cells from apoptosis by targeting RAC1. Exp Ther Med. 2020;19:9–18.

    Google Scholar 

  18. Zhang Z, Li X, Li A, Wu G. miR-485-5p suppresses Schwann cell proliferation and myelination by targeting cdc42 and RAC1. Exp Cell Res. 2020;388(1): 111803.

    Article  CAS  Google Scholar 

  19. Yan Y, Huang H. Interplay among PI3K/AKT, PTEN/FOXO and AR signaling in prostate cancer. Adv Exp Med Biol. 2019;1210:319–31.

    Article  CAS  Google Scholar 

  20. Yan Z, Zhen Li, Zhi L. Silencing lncRNAUNC5B represses growth and metastasis of human colon cancer cells via raising miR-622. Artif Cells Nanomed Biotechnol. 2020;48:60–7.

    Article  Google Scholar 

  21. Li G, Zhang C, Liang W, Zhang Y, Shen Y, Tian X. Berberine regulates the Notch1/PTEN/PI3K/AKT/mTOR pathway and acts synergistically with 17-AAG and SAHA in SW480 colon cancer cells. Pharm Biol. 2021;59(1):21–30.

    Article  CAS  Google Scholar 

  22. Shimaoka H, Takeno S, Maki K, Sasaki T, Hasegawa S, Yamashita Y. A cytokine signal inhibitor for rheumatoid arthritis enhances cancer metastasis via depletion of NK cells in an experimental lung metastasis mouse model of colon cancer. Oncol Lett. 2017;14(3):3019–27.

    Article  Google Scholar 

  23. Wang L, Cho KB, Li Y, Tao G, Xie Z, Guo B. Long noncoding RNA (lncRNA)-mediated competing endogenous rna networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int J Mol Sci. 2019;20(22):5758.

    Article  CAS  Google Scholar 

  24. Zhu Y, Qiao L, Zhou Y, et al. Long non-codingRNA FOXD2-AS1 contributes to colorectal cancer proliferation through its interaction with miR-185-5p. Cancer Sci. 2018;109(7):2235–42.

    Article  CAS  Google Scholar 

  25. Wu Q, Meng WY, Jie Y, Zhao H. LncRNA MALAT1 induces colon cancer development by regulating miR-129-5p/HMGB1 axis. J Cell Physiol. 2018;233(9):6750–7.

    Article  CAS  Google Scholar 

  26. Ahmed FE. miRNA as markers for the diagnostic screening of colon cancer. Expert Rev Anticancer Ther. 2014;14(4):463–85.

    Article  CAS  Google Scholar 

  27. Zeng M, Zhu L, Li L, Kang C. miR-378 suppresses the proliferation, migration and invasion of colon cancer cells by inhibiting SDAD1. Cell Mol Biol Lett. 2017;22:12.

    Article  Google Scholar 

  28. Zhang W, Sun Z, Su L, et al. miRNA-185 serves as a prognostic factor and suppresses migration and invasion through Wnt1 in colon cancer. Eur J Pharmacol. 2018;825:75–84.

    Article  CAS  Google Scholar 

  29. Zirong F, Jian Z, Yixue X, et al. NR2C2-uORF targeting UCA1-miR-627-5p-NR2C2 feedback loop to regulate the malignant behaviors of glioma cells. Cell Death Dis. 2018;9:1165.

    Article  Google Scholar 

  30. Zhenzhe Li, Jixing Z, Hongshan Z, et al. Modulating lncRNA SNHG15/CDK6/miR-627 circuit by palbociclib, overcomes temozolomide resistance and reduces M2-polarization of glioma associated microglia in glioblastoma multiforme. J Exp Clin Cancer Res. 2019;38:380.

    Article  Google Scholar 

  31. André S, Singh T, Lacal JC, Smetana K Jr, Gabius HJ. Rho GTPase RAC1: molecular switch within the galectin network and for N-glycan α2,6-sialylation/O-glycan core 1 sialylation in colon cancer in vitro. Folia Biol (Praha). 2014;60(3):95–107.

    Google Scholar 

  32. Witte D, Otterbein H, Förster M, et al. Negative regulation of TGF-β1-induced MKK6-p38 and MEK-ERK signalling and epithelial-mesenchymal transition by Rac1b. Sci Rep. 2017;7(1):17313.

    Article  Google Scholar 

  33. Zhu G, Wang Y, Huang B, et al. A RAC1/PAK1 cascade controls β-catenin activation in colon cancer cells. Oncogene. 2012;31(8):1001–12.

    Article  CAS  Google Scholar 

  34. Xia L, Lin J, Su J, et al. Diallyl disulfide inhibits colon cancer metastasis by suppressing RAC1-mediated epithelial-mesenchymal transition. Onco Targets Ther. 2019;12:5713–28.

    Article  CAS  Google Scholar 

  35. Qu H, Sun H, Wang X. Neogenin-1 promotes cell proliferation, motility, and adhesion by up-regulation of zinc finger e-box binding homeobox 1 via activating the RAC1/PI3K/AKT pathway in gastric cancer cells. Cell Physiol Biochem. 2018;48(4):1457–67.

    Article  CAS  Google Scholar 

  36. Yang Y, Du J, Hu Z, et al. Activation of RAC1-PI3K/Akt is required for epidermal growth factor-induced PAK1 activation and cell migration in MDA-MB-231 breast cancer cells. J Biomed Res. 2011;25(4):237–45.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Huazhong University of Science and Technology “Double Top” Construction Project of International Cooperation (grant 540–5001540013 to Feng JP) and Wuhan Municipal Health Commission (WX19D65 to Jing Fang).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: JF, JF. Performed the experiments: JF, Junyuan Yang. Statistical analysis: HC, WS. Formal analysis: LX. Funding acquisition: Jing Fang, JF. Wrote the paper: JF. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jueping Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

Our study was approved by the Ethics Review Board of Wuhan Fourth Hospital.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Yang, J., Chen, H. et al. Long non-coding RNA LBX2-AS1 predicts poor survival of colon cancer patients and promotes its progression via regulating miR-627-5p/RAC1/PI3K/AKT pathway. Human Cell 35, 1521–1534 (2022). https://doi.org/10.1007/s13577-022-00745-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00745-x

Keywords

Navigation