Skip to main content
Log in

Regulation of PTEN and ovarian cancer progression by an E3 ubiquitin ligase RBCK1

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Ovarian cancer is one of the most lethal gynecologic malignancies worldwide, with the 5-year survival is less than 50%. Although some clinical achievements have been achieved, the overall survival rate has remained unchanged over the past 20 years. Therefore, it is necessary and urgent to develop the potential modifiers and therapeutic approach to improve the overall survival rate in ovarian cancer patients. RBCK1 is an RING protein E3 ubiquitin ligase, which was revealed to involve in the progression of several cancers through its ubiquitination function. In this research, we report that RBCK1 expression is significantly elevated in human ovarian cancer and strongly associated with poor patients’ prognosis. RBCK1 deficiency induces cell apoptosis and inhibits cell proliferation and migration in ovarian cancer cells. In terms of molecular mechanism, we report that RBCK1 interacts with PTEN and promotes PTEN degradation in K48-linked ubiquitination. Our study suggests a new and interesting regulatory mechanism that RBCK1 facilitates PTEN degradation, which could be a new potential therapeutic target for ovarian cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Gaona-Luviano P, Medina-Gaona LA, Magana-Perez K. Epidemiology of ovarian cancer. Chin Clin Oncol. 2020;9(4):47. https://doi.org/10.21037/cco-20-34.

    Article  PubMed  Google Scholar 

  2. Penyige A, Marton E, Soltesz B, Szilagyi-Bonizs M, Poka R, Lukacs J, et al. Circulating miRNA profiling in plasma samples of ovarian cancer patients. Int J Mol Sci. 2019;20(18):4533. https://doi.org/10.3390/ijms20184533.

    Article  CAS  PubMed Central  Google Scholar 

  3. Kossai M, Leary A, Scoazec JY, Genestie C. Ovarian cancer: a heterogeneous disease. Pathobiology. 2018;85(1–2):41–9. https://doi.org/10.1159/000479006.

    Article  PubMed  Google Scholar 

  4. Zachariae H, Hansen HE, Sogaard H, Olsen TS. Kidney biopsies in methotrexate-treated psoriatics. Dermatologica. 1990;181(4):273–6. https://doi.org/10.1159/000247821.

    Article  CAS  PubMed  Google Scholar 

  5. Huang YW. Association of BRCA1/2 mutations with ovarian cancer prognosis: an updated meta-analysis. Medicine (Baltimore). 2018;97(2): e9380. https://doi.org/10.1097/MD.0000000000009380.

    Article  CAS  Google Scholar 

  6. Eisenhaber B, Chumak N, Eisenhaber F, Hauser MT. The ring between ring fingers (RBR) protein family. Genome Biol. 2007;8(3):209. https://doi.org/10.1186/gb-2007-8-3-209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marin I, Lucas JI, Gradilla AC, Ferrus A. Parkin and relatives: the RBR family of ubiquitin ligases. Physiol Genomics. 2004;17(3):253–63. https://doi.org/10.1152/physiolgenomics.00226.2003.

    Article  CAS  PubMed  Google Scholar 

  8. Gustafsson N, Zhao C, Gustafsson JA, Dahlman-Wright K. RBCK1 drives breast cancer cell proliferation by promoting transcription of estrogen receptor alpha and cyclin B1. Cancer Res. 2010;70(3):1265–74. https://doi.org/10.1158/0008-5472.CAN-09-2674.

    Article  CAS  PubMed  Google Scholar 

  9. Liu ML, Zang F, Zhang SJ. RBCK1 contributes to chemoresistance and stemness in colorectal cancer (CRC). Biomed Pharmacother. 2019;118: 109250. https://doi.org/10.1016/j.biopha.2019.109250.

    Article  CAS  PubMed  Google Scholar 

  10. Yu S, Dai J, Ma M, Xu T, Kong Y, Cui C, et al. RBCK1 promotes p53 degradation via ubiquitination in renal cell carcinoma. Cell Death Dis. 2019;10(4):254. https://doi.org/10.1038/s41419-019-1488-2.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275(5308):1943–7. https://doi.org/10.1126/science.275.5308.1943.

    Article  CAS  PubMed  Google Scholar 

  12. Martins FC, Couturier DL, Paterson A, Karnezis AN, Chow C, Nazeran TM, et al. Clinical and pathological associations of PTEN expression in ovarian cancer: a multicentre study from the Ovarian Tumour Tissue Analysis Consortium. Br J Cancer. 2020;123(5):793–802. https://doi.org/10.1038/s41416-020-0900-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998;273(22):13375–8. https://doi.org/10.1074/jbc.273.22.13375.

    Article  CAS  PubMed  Google Scholar 

  14. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998;95(1):29–39. https://doi.org/10.1016/s0092-8674(00)81780-8.

    Article  CAS  PubMed  Google Scholar 

  15. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science. 1998;280(5369):1614–7. https://doi.org/10.1126/science.280.5369.1614.

    Article  CAS  PubMed  Google Scholar 

  16. Taylor H, Laurence ADJ, Uhlig HH. The role of pten in innate and adaptive immunity. Cold Spring Harb Perspect Med. 2019;9(12): a036996. https://doi.org/10.1101/cshperspect.a036996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xia Q, Ali S, Liu L, Li Y, Liu X, Zhang L, et al. Role of ubiquitination in PTEN cellular homeostasis and its implications in GB drug resistance. Front Oncol. 2020;10:1569. https://doi.org/10.3389/fonc.2020.01569.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 2020;5(1):11. https://doi.org/10.1038/s41392-020-0107-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shmueli A, Oren M. Life, death, and ubiquitin: taming the mule. Cell. 2005;121(7):963–5. https://doi.org/10.1016/j.cell.2005.06.018.

    Article  CAS  PubMed  Google Scholar 

  20. Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20(11):1242–53. https://doi.org/10.1038/nm.3739.

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura N. Ubiquitin system. Int J Mol Sci. 2018;19(4):1080. https://doi.org/10.3390/ijms19041080.

    Article  CAS  PubMed Central  Google Scholar 

  22. Tokunaga F. Linear ubiquitination-mediated NF-kappaB regulation and its related disorders. J Biochem. 2013;154(4):313–23. https://doi.org/10.1093/jb/mvt079.

    Article  CAS  PubMed  Google Scholar 

  23. Niu J, Shi Y, Iwai K, Wu ZH. LUBAC regulates NF-kappaB activation upon genotoxic stress by promoting linear ubiquitination of NEMO. EMBO J. 2011;30(18):3741–53. https://doi.org/10.1038/emboj.2011.264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen Z, Thomas SN, Bolduc DM, Jiang X, Zhang X, Wolberger C, et al. Enzymatic analysis of PTEN ubiquitylation by WWP2 and NEDD4-1 E3 ligases. Biochemistry. 2016;55(26):3658–66. https://doi.org/10.1021/acs.biochem.6b00448.

    Article  CAS  PubMed  Google Scholar 

  25. Xia Q, Zhang H, Zhang P, Li Y, Xu M, Li X, et al. Oncogenic Smurf1 promotes PTEN wild-type glioblastoma growth by mediating PTEN ubiquitylation. Oncogene. 2020;39(36):5902–15. https://doi.org/10.1038/s41388-020-01400-1.

    Article  CAS  PubMed  Google Scholar 

  26. He L, Ingram A, Rybak AP, Tang D. Shank-interacting protein-like 1 promotes tumorigenesis via PTEN inhibition in human tumor cells. J Clin Investig. 2010;120(6):2094–108. https://doi.org/10.1172/JCI40778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. De Melo J, Lin X, He L, Wei F, Major P, Tang D. SIPL1-facilitated PTEN ubiquitination contributes to its association with PTEN. Cell Signal. 2014;26(12):2749–56. https://doi.org/10.1016/j.cellsig.2014.08.013.

    Article  CAS  PubMed  Google Scholar 

  28. Shi M, Whorton AE, Sekulovski N, Paquet M, MacLean JA, Song Y, et al. Inactivation of TRP53, PTEN, RB1, and/or CDH1 in the ovarian surface epithelium induces ovarian cancer transformation and metastasis. Biol Reprod. 2020;102(5):1055–64. https://doi.org/10.1093/biolre/ioaa008.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhao W, Han T, Li B, Ma Q, Yang P, Li H. miR-552 promotes ovarian cancer progression by regulating PTEN pathway. J Ovarian Res. 2019;12(1):121. https://doi.org/10.1186/s13048-019-0589-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kinross KM, Montgomery KG, Kleinschmidt M, Waring P, Ivetac I, Tikoo A, et al. An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice. J Clin Investig. 2012;122(2):553–7. https://doi.org/10.1172/JCI59309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the members of Department of Gynaecology and Obstetrics, Affiliated Hospital of Xuzhou Medical University for sharing valuable material and research support.

Funding

This project were supported by Natural Science Foundation of Jiangsu Province (Grant No. BK20181152), China Postdoctoral Science Foundation funded project (Grant No. 237399), Scientific Research Project of Jiangsu Commission of Health (No. H2018015), Primary Research and Development Plan of Xuzhou Science and Technology (No. KC18146; No. KC20166), Research Project of Jiangsu Maternal and Child Health (No. F201903), Research and innovation program for Postgraduates in Colleges and universities in Jiangsu Province (No. KYCX20_2483), the Key Laboratory Foundation of Jiangsu Province (No. XZSYSKF2021017), and the Development Fund of Affiliated Hospital of Xuzhou Medical University (No. XYFM2021009).

Author information

Authors and Affiliations

Authors

Contributions

LH conceived and designed the study. GW, ZZ, and SS collected and wrote the manuscript. FY and ZJ helped to analyze the data. ZL and TW supervised the present study and had full access to all the data. LH confirm the authenticity of all the raw data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lei Hua.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethics approval

Approval was obtained from the ethics committee of University Affiliated Hospital of Xuzhou Medical University (No. XYFY2021-KL017-01). The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2327 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zhuang, Z., Shen, S. et al. Regulation of PTEN and ovarian cancer progression by an E3 ubiquitin ligase RBCK1. Human Cell 35, 896–908 (2022). https://doi.org/10.1007/s13577-022-00681-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00681-w

Keywords

Navigation