Skip to main content

Advertisement

Log in

Development of a CAFs-related gene signature to predict survival and drug response in bladder cancer

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

As one of important components of tumor microenvironment, CAFs (cancer-associated fibroblasts) play a vital role in the development and metastasis of bladder cancer. The present study aimed to develop a CAFs-related gene signature to predict the prognosis of patients and the response to chemotherapy and immunotherapy based on research of multidatabase. Expression data and clinical information were obtained from TCGA and GEO databases. Different bioinformatic and statistical methods were combined to construct the robust CAFs-related gene signature for prognosis. The model was explored from four aspects: single-cell source, immune infiltration, correlation with cancer-related genes and pathways, and prediction of drug response. After screening, five genes (BNC2, LAMA2, MFAP5, NID1, and OLFML1) related to CAFs were used for constructing the signature to divide patients into high- and low-risk groups. Patients in low-risk group had better prognosis and multidatabase analysis confirmed the predictive value. The five genes were mainly expressed by fibroblasts and involved in regulation of pathways related with glycolysis, hypoxia, and epithelial–mesenchymal transition (EMT). BNC2, LAMA2, and NID1 were strongly associated with drug sensitivity. Moreover, the immunological status was different between high- and low-risk groups. High-risk patients had poor response to chemotherapy or immunotherapy. The CAFs-related gene signature might help to optimize risk stratification and provide a new insight in individual treatment for bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All the data in our study can be accessed from the online databases.

Abbreviations

CAFs:

Cancer-associated fibroblasts

BLCA:

Bladder cancer

TME:

Tumor microenvironment

TCGA:

The cancer genome atlas

MIBC:

Muscle invasive bladder cancer

NMIBC:

Non-muscle invasive bladder cancer

TMB:

Tumor mutation burden

DEGs:

Differentially expressed genes

WGCNA:

Weighted gene co-expression network analysis

References

  1. Richters A, Aben KKH, Kiemeney L. The global burden of urinary bladder cancer: an update. World J Urol. 2020;38(8):1895–904. https://doi.org/10.1007/s00345-019-02984-4.

    Article  PubMed  Google Scholar 

  2. Hedegaard J, Lamy P, Nordentoft I, Algaba F, Hoyer S, Ulhoi BP, et al. Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell. 2016;30(1):27–42. https://doi.org/10.1016/j.ccell.2016.05.004.

    Article  CAS  PubMed  Google Scholar 

  3. Fong MHY, Feng M, McConkey DJ, Choi W. Update on bladder cancer molecular subtypes. Transl Androl Urol. 2020;9(6):2881–9. https://doi.org/10.21037/tau-2019-mibc-12.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sjodahl G, Eriksson P, Liedberg F, Hoglund M. Molecular classification of urothelial carcinoma: global mRNA classification versus tumour-cell phenotype classification. J Pathol. 2017;242(1):113–25. https://doi.org/10.1002/path.4886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dzobo K, Dandara C. Architecture of cancer-associated fibroblasts in tumor microenvironment: mapping their origins, heterogeneity, and role in cancer therapy resistance. OMICS. 2020;24(6):314–39. https://doi.org/10.1089/omi.2020.0023.

    Article  CAS  PubMed  Google Scholar 

  6. Villaronga MA, Teijeiro SA, Hermida-Prado F, Garzon-Arango M, Sanz-Moreno V, Garcia-Pedrero JM. Analysis of invasive activity of CAF spheroids into three dimensional (3D) collagen matrices. Methods Mol Biol. 2018;1731:145–54. https://doi.org/10.1007/978-1-4939-7595-2_14.

    Article  CAS  PubMed  Google Scholar 

  7. Bertero T, Oldham WM, Grasset EM, Bourget I, Boulter E, Pisano S, et al. Tumor-stroma mechanics coordinate amino acid availability to sustain tumor growth and malignancy. Cell Metab. 2019;29(1):124–40. https://doi.org/10.1016/j.cmet.2018.09.012.

    Article  CAS  PubMed  Google Scholar 

  8. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612. https://doi.org/10.1038/ncomms3612.

    Article  CAS  PubMed  Google Scholar 

  9. Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. Elife. 2017. https://doi.org/10.7554/eLife.26476.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7. https://doi.org/10.1089/omi.2011.0118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559. https://doi.org/10.1186/1471-2105-9-559.

    Article  CAS  Google Scholar 

  12. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13. https://doi.org/10.1093/nar/gky1131.

    Article  CAS  PubMed  Google Scholar 

  13. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun D, Wang J, Han Y, Dong X, Ge J, Zheng R, et al. TISCH: a comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucleic Acids Res. 2021;49(D1):D1420–30. https://doi.org/10.1093/nar/gkaa1020.

    Article  CAS  PubMed  Google Scholar 

  15. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–7. https://doi.org/10.1038/nmeth.3337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER20 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48(W1):W509–14. https://doi.org/10.1093/nar/gkaa407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fu J, Li K, Zhang W, Wan C, Zhang J, Jiang P, et al. Large-scale public data reuse to model immunotherapy response and resistance. Genome Med. 2020;12(1):21. https://doi.org/10.1186/s13073-020-0721-z.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu CJ, Hu FF, Xia MX, Han L, Zhang Q, Guo AY. GSCALite: a web server for gene set cancer analysis. Bioinformatics. 2018;34(21):3771–2. https://doi.org/10.1093/bioinformatics/bty411.

    Article  CAS  PubMed  Google Scholar 

  19. Long X, Xiong W, Zeng X, Qi L, Cai Y, Mo M, et al. Cancer-associated fibroblasts promote cisplatin resistance in bladder cancer cells by increasing IGF-1/ERbeta/Bcl-2 signalling. Cell Death Dis. 2019;10(5):375. https://doi.org/10.1038/s41419-019-1581-6.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 2018;33(3):463–79. https://doi.org/10.1016/j.ccell.2018.01.011.

    Article  CAS  PubMed  Google Scholar 

  21. Shan T, Chen S, Chen X, Lin WR, Li W, Ma J, et al. Prometastatic mechanisms of CAF-mediated EMT regulation in pancreatic cancer cells. Int J Oncol. 2017;50(1):121–8. https://doi.org/10.3892/ijo.2016.3779.

    Article  CAS  PubMed  Google Scholar 

  22. Kechagia JZ, Ivaska J, Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol. 2019;20(8):457–73. https://doi.org/10.1038/s41580-019-0134-2.

    Article  CAS  PubMed  Google Scholar 

  23. Mohammadi H, Sahai E. Mechanisms and impact of altered tumour mechanics. Nat Cell Biol. 2018;20(7):766–74. https://doi.org/10.1038/s41556-018-0131-2.

    Article  CAS  PubMed  Google Scholar 

  24. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8(3):241–54. https://doi.org/10.1016/j.ccr.2005.08.010.

    Article  CAS  PubMed  Google Scholar 

  25. Monteran L, Erez N. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front Immunol. 2019;10:1835. https://doi.org/10.3389/fimmu.2019.01835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martinez-Outschoorn UE, Lisanti MP, Sotgia F. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol. 2014;25:47–60. https://doi.org/10.1016/j.semcancer.2014.01.005.

    Article  CAS  PubMed  Google Scholar 

  27. Vanhoutteghem A, Djian P. Basonuclin 2: an extremely conserved homolog of the zinc finger protein basonuclin. Proc Natl Acad Sci USA. 2004;101(10):3468–73. https://doi.org/10.1073/pnas.0400268101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Urgard E, Reigo A, Reinmaa E, Rebane A, Metspalu A. Human basonuclin 2 up-regulates a cascade set of interferon-stimulated genes with anti-cancerous properties in a lung cancer model. Cancer Cell Int. 2017;17:18. https://doi.org/10.1186/s12935-017-0394-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Akagi T, Ito T, Kato M, Jin Z, Cheng Y, Kan T, et al. Chromosomal abnormalities and novel disease-related regions in progression from Barrett’s esophagus to esophageal adenocarcinoma. Int J Cancer. 2009;125(10):2349–59. https://doi.org/10.1002/ijc.24620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cesaratto L, Grisard E, Coan M, Zandona L, De Mattia E, Poletto E, et al. BNC2 is a putative tumor suppressor gene in high-grade serous ovarian carcinoma and impacts cell survival after oxidative stress. Cell Death Dis. 2016;7(9): e2374. https://doi.org/10.1038/cddis.2016.278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murakami K, Kikugawa S, Kobayashi Y, Uehara S, Suzuki T, Kato H, et al. Olfactomedin-like protein OLFML1 inhibits Hippo signaling and mineralization in osteoblasts. Biochem Biophys Res Commun. 2018;505(2):419–25. https://doi.org/10.1016/j.bbrc.2018.09.112.

    Article  CAS  PubMed  Google Scholar 

  32. Wan B, Zhou YB, Zhang X, Zhu H, Huo K, Han ZG. hOLFML1, a novel secreted glycoprotein, enhances the proliferation of human cancer cell lines in vitro. FEBS Lett. 2008;582(21–22):3185–92. https://doi.org/10.1016/j.febslet.2008.08.009.

    Article  CAS  PubMed  Google Scholar 

  33. Patarroyo M, Tryggvason K, Virtanen I. Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol. 2002;12(3):197–207. https://doi.org/10.1016/s1044-579x(02)00023-8.

    Article  CAS  PubMed  Google Scholar 

  34. Lee S, Oh T, Chung H, Rha S, Kim C, Moon Y, et al. Identification of GABRA1 and LAMA2 as new DNA methylation markers in colorectal cancer. Int J Oncol. 2012;40(3):889–98. https://doi.org/10.3892/ijo.2011.1245.

    Article  CAS  PubMed  Google Scholar 

  35. Vitolo D, Ciocci L, Deriu G, Spinelli S, Cortese S, Masuelli L, et al. Laminin alpha2 chain-positive vessels and epidermal growth factor in lung neuroendocrine carcinoma: a model of a novel cooperative role of laminin-2 and epidermal growth factor in vessel neoplastic invasion and metastasis. Am J Pathol. 2006;168(3):991–1003. https://doi.org/10.2353/ajpath.2006.041310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lemaire R, Bayle J, Mecham RP, Lafyatis R. Microfibril-associated MAGP-2 stimulates elastic fiber assembly. J Biol Chem. 2007;282(1):800–8. https://doi.org/10.1074/jbc.M609692200.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou Z, Cui D, Sun MH, Huang JL, Deng Z, Han BM, et al. CAFs-derived MFAP5 promotes bladder cancer malignant behavior through NOTCH2/HEY1 signaling. FASEB J. 2020;34(6):7970–88. https://doi.org/10.1096/fj.201902659R.

    Article  CAS  PubMed  Google Scholar 

  38. Xu Q, Chang H, Tian X, Lou C, Ma H, Yang X. Hypoxia-induced MFAP5 promotes tumor migration and invasion via AKT pathway in head and neck squamous cell carcinoma. J Cancer. 2020;11(6):1596–605. https://doi.org/10.7150/jca.38217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yeung TL, Leung CS, Yip KP, Sheng J, Vien L, Bover LC, et al. Anticancer immunotherapy by MFAP5 blockade inhibits fibrosis and enhances chemosensitivity in ovarian and pancreatic cancer. Clin Cancer Res. 2019;25(21):6417–28. https://doi.org/10.1158/1078-0432.CCR-19-0187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pedrola N, Devis L, Llaurado M, Campoy I, Martinez-Garcia E, Garcia M, et al. Nidogen 1 and nuclear protein 1: novel targets of ETV5 transcription factor involved in endometrial cancer invasion. Clin Exp Metastasis. 2015;32(5):467–78. https://doi.org/10.1007/s10585-015-9720-7.

    Article  CAS  PubMed  Google Scholar 

  41. Zhou Y, Zhu Y, Fan X, Zhang C, Wang Y, Zhang L, et al. NID1, a new regulator of EMT required for metastasis and chemoresistance of ovarian cancer cells. Oncotarget. 2017;8(20):33110–21. https://doi.org/10.18632/oncotarget.16145.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mao X, Tey SK, Yeung CLS, Kwong EML, Fung YME, Chung CYS, et al. Nidogen 1-enriched extracellular vesicles facilitate extrahepatic metastasis of liver cancer by activating pulmonary fibroblasts to secrete tumor necrosis factor receptor 1. Adv Sci (Weinh). 2020;7(21):2002157. https://doi.org/10.1002/advs.202002157.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 82071750, 81772713, 81472411), Taishan Scholar Program of Shandong Province (Grant No. tsqn20161077), Major Science and technology innovation project of Shandong Province (Grant No. 2019JZZY021002), Key projects of Qingdao Science and Technology Program (Grant No. 18-6-1-64-nsh), and Research and Development Program of Shandong Province (Grant No. 2018GSF118197).

Author information

Authors and Affiliations

Authors

Contributions

ZZ and HTN contributed to conception and design. ZJL, DL, and LPW contributed to collection and assembly of data. YL and YBC contributed to data analysis and interpretation. ZZ contributed to manuscript writing. WJ and HTN contributed to the manuscript revision and finalization.

Corresponding authors

Correspondence to Wei Jiao or Haitao Niu.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest in this work.

Ethics approval and consent to participate

Ethical approval for this study was obtained from the Ethics Committee of the affiliated hospital of Qingdao university.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13577_2022_673_MOESM1_ESM.tif

Supplementary file1 (TIF 5739 KB) Supplementary figure 1. Immune infiltration analysis of the CAFs-related gene signature. (A-E) Correlation analysis between the expressions of individual genes and infiltration levels of B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell. (F) Comparison of the infiltration of 22 leukocyte types between high and low CRS groups.

13577_2022_673_MOESM2_ESM.tif

Supplementary file2 (TIF 1833 KB) Supplementary figure 2. (A-E) The comparison of tumor infiltration levels among tumors with different somatic copy number alterations for the model genes. (F) Waterfall plot showing the mutation information for the model genes in TCGA.

13577_2022_673_MOESM3_ESM.tif

Supplementary file3 (TIF 1009 KB) Supplementary figure 3. The gene set drug sensitivity analysis from CTRP drug data. The color from blue to red represent the correlation between mRNA expression and IC50 (50% inhibitory concentration) of small molecules/drugs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Liang, Z., Li, D. et al. Development of a CAFs-related gene signature to predict survival and drug response in bladder cancer. Human Cell 35, 649–664 (2022). https://doi.org/10.1007/s13577-022-00673-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00673-w

Keywords

Navigation