Skip to main content

Advertisement

Log in

The miR-214-3p/c-Ski axis modulates endothelial–mesenchymal transition in human coronary artery endothelial cells in vitro and in mice model in vivo

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) is a leading non-communicable disease with a high fatality rate worldwide. Hypertension, a common cardiovascular condition, is a significant risk factor for the development of heart failure because the activation of the renin-angiotensin system (RAS) is considered to be the major promoting reason behind myocardial fibrosis (MF). In this study, Angiotensin II (Ang II) stimulation-induced endothelial to mesenchymal transition (End-MT) in HCAECs, including the decrease of CD31 level, the increase of α-SMA, collagen I, slug, snail, and TGF-β1 levels, and the promotion of Smad2/3 phosphorylation. Meanwhile, the c-Ski level was reduced in Ang II-stimulated HCAECs. In HCAECs, Ang II-induced changes could be partially attenuated by c-Ski overexpression. miR-214-3p directly targeted c-Ski and inhibited c-Ski expression. Moreover, miR-214-3p inhibition reduced Ang II-caused End-MT in HCAECs. miR-214-3p overexpression further enhanced Ang II-induced End-MT, while c-Ski overexpression could markedly reverse the effects of miR-214-3p overexpression. In the Ang II-induced mouse cardiac hypertrophic model, Ang II-caused increase of cellular cross-sectional area and cardiac fibrosis were partially ameliorated by LV-c-Ski; when mice were co-treated with LV-c-Ski and agomir-214-3p, the beneficial effects of LV-c-Ski were reversed. In conclusion, the miR-214-3p/c-Ski axis modulated Ang II-induced End-MT in HCAECs and cardiac hypertrophy and fibrosis in the mice model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data and material are available.

References

  1. Mendis S, Davis S, Norrving B. Organizational update: the world health organization global status report on noncommunicable diseases 2014; one more landmark step in the combat against stroke and vascular disease. Stroke. 2015;46(5):e121–2.

    Article  PubMed  Google Scholar 

  2. Shenasa M, Shenasa H. Hypertension, left ventricular hypertrophy, and sudden cardiac death. Int J Cardiol. 2017;237:60–3.

    Article  PubMed  Google Scholar 

  3. Conrad CH, et al. Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation. 1995;91(1):161–70.

    Article  CAS  PubMed  Google Scholar 

  4. Sovari AA, Karagueuzian HS. Myocardial fibrosis as a risk stratifier for sudden arrhythmic death. Expert Rev Cardiovasc Ther. 2011;9(8):951–3.

    Article  PubMed  Google Scholar 

  5. Park S, et al. Cardiac fibrosis: potential therapeutic targets. Transl Res. 2019;209:121–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leask A. Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res. 2010;106(11):1675–80.

    Article  CAS  PubMed  Google Scholar 

  7. Bischoff J. Endothelial-to-mesenchymal transition. Circ Res. 2019;124(8):1163–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li Y, Lui KO, Zhou B. Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases. Nat Rev Cardiol. 2018;15(8):445–56.

    Article  PubMed  Google Scholar 

  9. Piera-Velazquez S, Jimenez SA. Endothelial to mesenchymal transition: role in physiology and in the pathogenesis of human diseases. Physiol Rev. 2019;99(2):1281–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zeisberg EM, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13(8):952–61.

    Article  CAS  PubMed  Google Scholar 

  11. Zeisberg EM, et al. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol. 2008;19(12):2282–7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xu X, et al. Snail is a direct target of hypoxia-inducible factor 1alpha (HIF1alpha) in hypoxia-induced endothelial to mesenchymal transition of human coronary endothelial cells. J Biol Chem. 2015;290(27):16653–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cunnington RH, et al. Antifibrotic properties of c-Ski and its regulation of cardiac myofibroblast phenotype and contractility. Am J Physiol Cell Physiol. 2011;300(1):C176–86.

    Article  CAS  PubMed  Google Scholar 

  14. Cunnington RH, et al. The Ski-Zeb2-Meox2 pathway provides a novel mechanism for regulation of the cardiac myofibroblast phenotype. J Cell Sci. 2014;127(Pt 1):40–9.

    CAS  PubMed  Google Scholar 

  15. Wang J, et al. The mechanism of TGF-beta/miR-155/c-Ski regulates endothelial–mesenchymal transition in human coronary artery endothelial cells. Biosci Rep. 2017;37(4):BSR20160603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lucas T, Bonauer A, Dimmeler S. RNA therapeutics in cardiovascular disease. Circ Res. 2018;123(2):205–20.

    Article  CAS  PubMed  Google Scholar 

  17. Liang H, et al. A novel reciprocal loop between microRNA-21 and TGFbetaRIII is involved in cardiac fibrosis. Int J Biochem Cell Biol. 2012;44(12):2152–60.

    Article  CAS  PubMed  Google Scholar 

  18. Abonnenc M, et al. Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c. Circ Res. 2013;113(10):1138–47.

    Article  CAS  PubMed  Google Scholar 

  19. Wang BW, et al. MicroRNA-208a increases myocardial fibrosis via endoglin in volume overloading heart. PLoS ONE. 2014;9(1): e84188.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Beaumont J, et al. microRNA-122 down-regulation may play a role in severe myocardial fibrosis in human aortic stenosis through TGF-beta1 up-regulation. Clin Sci (Lond). 2014;126(7):497–506.

    Article  CAS  Google Scholar 

  21. Savary G, et al. MiR-214-3p, a new fibromiR involved in the pathogenesis of idiopathic pulmonary fibrosis. Eur Respir J. 2014;44(Suppl 58):1731.

    Google Scholar 

  22. Zhao Y, et al. The role of miR-214 in cardiovascular diseases. Eur J Pharmacol. 2017;816:138–45.

    Article  CAS  PubMed  Google Scholar 

  23. Liu H, et al. LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor growth of thyroid cancer through MET-PI3K-AKT signaling. J Exp Clin Cancer Res. 2018;37(1):279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Song J, et al. Pellino1-mediated TGF-beta1 synthesis contributes to mechanical stress induced cardiac fibroblast activation. J Mol Cell Cardiol. 2015;79:145–56.

    Article  CAS  PubMed  Google Scholar 

  25. Wang J, et al. The ACE2-Ang (1–7)-Mas receptor axis attenuates cardiac remodeling and fibrosis in post-myocardial infarction. Mol Med Rep. 2017;16(2):1973–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baker KM, Aceto JF. Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol. 1990;259(2 Pt 2):H610–8.

    CAS  PubMed  Google Scholar 

  27. Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292(1):C82–97.

    Article  CAS  PubMed  Google Scholar 

  28. Li D, et al. Modulation of constitutive nitric oxide synthase, bcl-2 and Fas expression in cultured human coronary endothelial cells exposed to anoxia-reoxygenation and angiotensin II: role of AT1 receptor activation. Cardiovasc Res. 1999;41(1):109–15.

    Article  CAS  PubMed  Google Scholar 

  29. You S, et al. Schizandrin B attenuates angiotensin II induced endothelial to mesenchymal transition in vascular endothelium by suppressing NF-kappaB activation. Phytomedicine. 2019;62:152955.

    Article  CAS  PubMed  Google Scholar 

  30. Liu L, et al. Angiotensin II inhibits the protein expression of ZO1 in vascular endothelial cells by downregulating VE cadherin. Mol Med Rep. 2018;18(1):429–34.

    CAS  PubMed  Google Scholar 

  31. Flynt AS, et al. Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate. Nat Genet. 2007;39(2):259–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Juan AH, et al. Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell. 2009;36(1):61–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Penna E, et al. microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO J. 2011;30(10):1990–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li D, et al. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat Commun. 2016;7:10872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Mil A, et al. MicroRNA-214 inhibits angiogenesis by targeting quaking and reducing angiogenic growth factor release. Cardiovasc Res. 2012;93(4):655–65.

    Article  PubMed  Google Scholar 

  36. van Balkom BW, et al. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood. 2013;121(19):3997–4006.

    Article  PubMed  Google Scholar 

  37. Denby L, et al. MicroRNA-214 antagonism protects against renal fibrosis. J Am Soc Nephrol. 2014;25(1):65–80.

    Article  CAS  PubMed  Google Scholar 

  38. Aurora AB, et al. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca(2)(+) overload and cell death. J Clin Invest. 2012;122(4):1222–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu Y, et al. MicroRNA-214-3p in the kidney contributes to the development of hypertension. J Am Soc Nephrol. 2018;29(10):2518–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Colson P, Ryckwaert F, Coriat P. Renin angiotensin system antagonists and anesthesia. Anesth Analg. 1999;89(5):1143–55.

    Article  CAS  PubMed  Google Scholar 

  41. Sata M, Fukuda D. Crucial role of renin-angiotensin system in the pathogenesis of atherosclerosis. J Med Invest. 2010;57(1–2):12–25.

    Article  PubMed  Google Scholar 

  42. Palomeque J, Delbridge L, Petroff MV. Angiotensin II: a regulator of cardiomyocyte function and survival. Front Biosci (Landmark Ed). 2009;14:5118–33.

    Article  CAS  Google Scholar 

  43. Wang L, et al. CXCL1-CXCR2 axis mediates angiotensin II-induced cardiac hypertrophy and remodelling through regulation of monocyte infiltration. Eur Heart J. 2018;39(20):1818–31.

    Article  CAS  PubMed  Google Scholar 

  44. Ye S, et al. Celastrol attenuates angiotensin II-induced cardiac remodeling by targeting STAT3. Circ Res. 2020;126(8):1007–23.

    Article  CAS  PubMed  Google Scholar 

  45. Luo YX, et al. SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity. Eur Heart J. 2017;38(18):1389–98.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Xinjiang Science and Technology Support Project (2018E02064).

Funding

This study was supported by Xinjiang Science and Technology Support Project (2018E02064).

Author information

Authors and Affiliations

Authors

Contributions

JW and HL conception and design the experiments. JW drafting the article. HL revising the article critically for important intellectual content. WD contributed to the conception of the study. ZL, XL, TZ and YZ contributed to cell and animal experiments. WS and XW contributed to the analysis and manuscript preparation. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Hongjian Li.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest in this work.

Ethics approval

All animal experiments were approved by the Animal Ethics Committee of The Fifth Affiliated Hospital of Xinjiang Medical University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Supplementary file2 (XLSX 222 KB)

Fig.S1

The expression of c-Ski, α-SMA, and collagen I in response to the treatment of Ang II of different concentrations (0, 1, 2.5, 5, and 10 μg/ml) for 24 h in HCAECs.. n=3; **P<0.01.Supplementary file 3 (TIF 333 KB)

Fig.S2

The predicted binding site between miR-124-3p and 3'UTR of c-Ski in rat and mouse species. Supplementary file 4 (TIF 203 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, H., Lv, Z. et al. The miR-214-3p/c-Ski axis modulates endothelial–mesenchymal transition in human coronary artery endothelial cells in vitro and in mice model in vivo. Human Cell 35, 486–497 (2022). https://doi.org/10.1007/s13577-021-00653-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00653-6

Keywords

Navigation