Suppressive role of microRNA-130b-3p in ferroptosis in melanoma cells correlates with DKK1 inhibition and Nrf2-HO-1 pathway activation


Cell death pathways related to ferroptosis are implicated in the progression of melanoma. Emerging data reporting the upregulation of microRNA (miR)-130b-3p in melanoma indicate the potential implication of miR-130b-3p in this malignancy. Herein, we aimed to identify whether and how miR-130b-3p regulated ferroptosis in melanoma cells. Melanoma cells (A375, G-361) were treated with erastin or RSL3 to mimic ferroptosis in vitro. Viability, lipid peroxidation level and ferrous ion content in melanoma cells were then assessed in response to manipulation of miR-130b-3p expression. Luciferase assay was conducted to determine the binding of miR-130b-3p to Dickkopf1 (DKK1). Western blot assay was conducted to determine the expression of molecules related to nuclear factor-erythroid 2 p45-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. The results indicated that miR-130b-3p exerted an inhibitory role in erastin or RSL3-induced ferroptosis, evidenced by reductions in lipid peroxidation and ferrous ion content. By suppressing the expression of target gene DKK1, miR-130b-3p activated the Nrf2/HO-1 pathway, whereby repressing ferroptosis. miR-130b-3p blocked the antitumor activity of erastin. Further, in vitro findings were reproduced in an in vivo murine model. Together, these data suggest the potential of miR-130b-3p to inhibit ferroptosis in melanoma cells and the mechanism was related to DKK1-mediated Nrf2/HO-1 pathway.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Liu Q, Das M, Liu Y, Huang L. Targeted drug delivery to melanoma. Adv Drug Deliv Rev. 2018;127:208–21.

    CAS  Article  Google Scholar 

  2. 2.

    Eddy K, Chen S. Overcoming immune evasion in melanoma. Int J Mol Sci. 2020;21:8984.

    CAS  Article  Google Scholar 

  3. 3.

    Bellei B, Migliano E, Picardo M. A framework of major tumor-promoting signal transduction pathways implicated in melanoma-fibroblast dialogue. Cancers (Basel). 2020;12:3400.

    CAS  Article  Google Scholar 

  4. 4.

    Digklia A, Michielin O. The cutting edge of metastatic melanoma therapy. Melanoma Manag. 2016;3:217–29.

    Article  Google Scholar 

  5. 5.

    Ubellacker JM, Tasdogan A, Ramesh V, et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature. 2020;585:113–8.

    CAS  Article  Google Scholar 

  6. 6.

    Tsoi J, Robert L, Paraiso K, et al. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell. 2018;33:890-904 e5.

    CAS  Article  Google Scholar 

  7. 7.

    Ashrafizadeh M, Mohammadinejad R, Tavakol S, Ahmadi Z, Roomiani S, Katebi M. Autophagy, anoikis, ferroptosis, necroptosis, and endoplasmic reticulum stress: potential applications in melanoma therapy. J Cell Physiol. 2019;234:19471–9.

    CAS  Article  Google Scholar 

  8. 8.

    Viswanathan VS, Ryan MJ, Dhruv HD, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453–7.

    CAS  Article  Google Scholar 

  9. 9.

    Hydbring P, Wang Y, Fassl A, et al. Cell-cycle-targeting MicroRNAs as therapeutic tools against refractory cancers. Cancer Cell. 2017;31:576-90 e8.

    CAS  Article  Google Scholar 

  10. 10.

    Sand M, Skrygan M, Sand D, et al. Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res. 2013;351:85–98.

    CAS  Article  Google Scholar 

  11. 11.

    Murria Estal R, de Unamuno BB, Perez Simo G, et al. MicroRNAs expression associated with aggressive clinicopathological features and poor prognosis in primary cutaneous melanomas. Melanoma Res. 2021;31:18–26.

    Article  Google Scholar 

  12. 12.

    Kim IG, Kim SY, Kim HA, et al. Disturbance of DKK1 level is partly involved in survival of lung cancer cells via regulation of ROMO1 and gamma-radiation sensitivity. Biochem Biophys Res Commun. 2014;443:49–55.

    CAS  Article  Google Scholar 

  13. 13.

    Niessner H, Kosnopfel C, Sinnberg T, et al. Combined activity of temozolomide and the mTOR inhibitor temsirolimus in metastatic melanoma involves DKK1. Exp Dermatol. 2017;26:598–606.

    CAS  Article  Google Scholar 

  14. 14.

    Lou J, Han D, Yu H, Yu G, Jin M, Kim SJ. Cytoprotective effect of taurine against hydrogen peroxide-induced oxidative stress in UMR-106 cells through the Wnt/beta-catenin signaling pathway. Biomol Ther (Seoul). 2018;26:584–90.

    CAS  Article  Google Scholar 

  15. 15.

    Yu S, Khor TO, Cheung KL, et al. Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS ONE. 2010;5:e8579.

    Article  Google Scholar 

  16. 16.

    Pulkkinen KH, Yla-Herttuala S, Levonen AL. Heme oxygenase 1 is induced by miR-155 via reduced BACH1 translation in endothelial cells. Free Radic Biol Med. 2011;51:2124–31.

    CAS  Article  Google Scholar 

  17. 17.

    Hua AB, Justiniano R, Perer J, et al. Repurposing the electron transfer reactant phenazine methosulfate (PMS) for the apoptotic elimination of malignant melanoma cells through induction of lethal oxidative and mitochondriotoxic stress. Cancers (Basel). 2019;11:590.

    CAS  Article  Google Scholar 

  18. 18.

    Chen J, Feilotter HE, Pare GC, et al. MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma. Am J Pathol. 2010;176:2520–9.

    CAS  Article  Google Scholar 

  19. 19.

    Boyle GM, Woods SL, Bonazzi VF, et al. Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res. 2011;24:525–37.

    CAS  Article  Google Scholar 

  20. 20.

    Smith AP, Hoek K, Becker D. Whole-genome expression profiling of the melanoma progression pathway reveals marked molecular differences between nevi/melanoma in situ and advanced-stage melanomas. Cancer Biol Ther. 2005;4:1018–29.

    CAS  Article  Google Scholar 

  21. 21.

    Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19:649–58.

    CAS  Article  Google Scholar 

  22. 22.

    Yang Y, Luo M, Zhang K, et al. Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma. Nat Commun. 2020;11:433.

    CAS  Article  Google Scholar 

  23. 23.

    Luo M, Wu L, Zhang K, et al. miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ. 2018;25:1457–72.

    CAS  Article  Google Scholar 

  24. 24.

    Zhang X, Ding M, Zhu P, et al. New insights into the Nrf-2/HO-1 signaling axis and its application in pediatric respiratory diseases. Oxid Med Cell Longev. 2019;2019:3214196.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    CAS  Article  Google Scholar 

  26. 26.

    Chen X, Li J, Kang R, Klionsky DJ, Tang D. Ferroptosis: machinery and regulation. Autophagy. 2020;27:1–28.

    CAS  Article  Google Scholar 

  27. 27.

    Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–31.

    CAS  Article  Google Scholar 

  28. 28.

    Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005.

    Article  Google Scholar 

  29. 29.

    Simiczyjew A, Dratkiewicz E, Mazurkiewicz J, Zietek M, Matkowski R, Nowak D. The influence of tumor microenvironment on immune escape of melanoma. Int J Mol Sci. 2020;21:8359.

    CAS  Article  Google Scholar 

  30. 30.

    Chen J, Li H, Chen H, et al. Dickkopf-1 inhibits the invasive activity of melanoma cells. Clin Exp Dermatol. 2012;37:404–10.

    CAS  Article  Google Scholar 

  31. 31.

    Hwang I, Park JH, Park HS, et al. Neural stem cells inhibit melanin production by activation of Wnt inhibitors. J Dermatol Sci. 2013;72:274–83.

    CAS  Article  Google Scholar 

  32. 32.

    Kato S, Weng QY, Insco ML, et al. Gain-of-function genetic alterations of g9a drive oncogenesis. Cancer Discov. 2020;10:980–97.

    CAS  Article  Google Scholar 

  33. 33.

    Cao J, Tsenovoy PL, Thompson EA, et al. Agonists of epoxyeicosatrienoic acids reduce infarct size and ameliorate cardiac dysfunction via activation of HO-1 and Wnt1 canonical pathway. Prostaglandins Other Lipid Med. 2015;116–117:76–86.

    Article  Google Scholar 

  34. 34.

    Gagliardi M, Cotella D, Santoro C, et al. Aldo-keto reductases protect metastatic melanoma from ER stress-independent ferroptosis. Cell Death Dis. 2019;10:902.

    CAS  Article  Google Scholar 

  35. 35.

    Jiang T, Cheng H, Su J, et al. Gastrodin protects against glutamate-induced ferroptosis in HT-22 cells through Nrf2/HO-1 signaling pathway. Toxicol In Vitro. 2020;62:104715.

    Article  Google Scholar 

  36. 36.

    Furfaro AL, Ottonello S, Loi G, et al. HO-1 downregulation favors BRAF(V600) melanoma cell death induced by Vemurafenib/PLX4032 and increases NK recognition. Int J Cancer. 2020;146:1950–62.

    CAS  Article  Google Scholar 

  37. 37.

    Hu Y, Huang J, Li Y, et al. Cistanche deserticola polysaccharide induces melanogenesis in melanocytes and reduces oxidative stress via activating NRF2/HO-1 pathway. J Cell Mol Med. 2020;24:4023–35.

    CAS  Article  Google Scholar 

Download references


This study was supported by Hunan Provincial Education Department Project (20C1125); Doctor’s Fund Project of Hunan Provincial People’s Hospital (BSJJ202008); Changsha Municipal Science and Technology Bureau Natural Science Foundation Project (No kq2014202).

Author information



Corresponding authors

Correspondence to Hao Feng or An Wei.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

The current study was performed with the approval of the Animal Ethics Committee of Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University). The animal experiments were conducted strictly obeying the guidelines for the care and use of laboratory animals issued by the National Institutes of Health.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.


Supplementary Figure S1 miR-130b-3p is up-regulated in melanoma cells. miR-130b-3p expression in a series of melanoma cell lines (A375, G361, HS1-CLS, MEL-CLS1-4, IGR-1, MEWO, NIS-G, WS1-CLS, and MML1) and a normal skin cell line PIG1. (EPS 446 KB)


Supplementary Figure S2 Representative images of flow cytometry evaluation of the level of lipid ROS using BODIPY-C11 probe after miR-130b-3p overexpression in A375 and G-361 cells treated with erastin for 24 hours or RSL3. The cells were treated with erastin (5 μM in A375 and 10 μM in G-361) or RSL3 (0.1 μM in A375 and 0.5 μM in G-361) for 24 hours. (EPS 1216 KB)


Supplementary Figure S3 Representative images of protein blots and quantitative analysis in Western blot analysis of DKK1 expression in response to miR-130b-3p overexpression alone or in combination with DKK1 overexpression. (EPS 1576 KB)


Supplementary Figure S4 Representative images of flow cytometry evaluation of the level of lipid ROS in A375 cells labeled with C11-BODIPY probe in response to miR-130b-3p overexpression alone or in combination with DKK1 overexpression. (EPS 1232 KB)


Supplementary Figure S5 miR-130b-3p affects tumorigenesis in vivo. Detection of the volume of xenografted tumors in the presence of miR-130b-3p overexpression/inhibition (*p < 0.05). (EPS 477 KB)

Supplementary file6 (DOCX 18 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liao, Y., Jia, X., Ren, Y. et al. Suppressive role of microRNA-130b-3p in ferroptosis in melanoma cells correlates with DKK1 inhibition and Nrf2-HO-1 pathway activation. Human Cell (2021).

Download citation


  • Melanoma
  • microRNA-130b
  • DKK1
  • Nrf2/HO-1 pathway
  • Ferroptosis
  • Lipid peroxidation
  • Iron accumulation