Skip to main content

Advertisement

Log in

Diversity in cancer invasion phenotypes indicates specific stroma regulated programs

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Tumor dissemination into the surrounding stroma is the initial step in a metastatic cascade. Invasion into stroma is a non-autonomous process for cancer, and its progression depends upon the stage of cancer, as well as the cells residing in the stroma. However, a systems framework to understand how stromal fibroblasts resist, collude, or aid cancer invasion has been lacking, limiting our understanding of the role of stromal biology in cancer metastasis. We and others have shown that gene perturbation in stromal fibroblasts can modulate cancer invasion into the stroma, highlighting the active role stroma plays in regulating its own invasion. However, cancer invasion into stroma is a complex higher-order process and consists of various sub-phenotypes that together can result in an invasion. Stromal invasion exhibits a diversity of modalities in vivo. It is not well understood if these diverse modalities are correlated, or they emanate from distinct mechanisms and if stromal biology could regulate these characteristics. These characteristics include the extent of invasion, formation, and persistence of invasive forks by cancer as opposed to a collective frontal invasion, the persistence of invading velocity by leader cells at the tip of invasive forks, etc. We posit that quantifying distinct aspects of collective invasion can provide useful suggestions about the plausible mechanisms regulating these processes, including whether the process is regulated by mechanics or by intercellular communication between stromal cells and cancer. Here, we have identified the sub-characteristics of invasion, which might be indicative of broader mechanisms regulating these processes, developed methods to quantify these metrics, and demonstrated that perturbation of stromal genes can modulate distinct aspects of collective invasion. Our results highlight that the genetic state of stromal fibroblasts can regulate complex phenomena involved in cancer dissemination and suggest that collective cancer invasion into stroma is an outcome of the complex interplay between cancer and stromal fibroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Suhail Y, Cain MP, Vanaja K, Kurywchak PA, Levchenko A, Kalluri R. Systems biology of cancer metastasis. Cell Syst. 2019;9(2):109–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168(4):670–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Eaton EN, et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature. 2015;525(7568):256–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qutaish MQ, Zhou Z, Prabhu D, Liu Y, Busso MR, Izadnegahdar D, et al. Cryo-imaging and software platform for analysis of molecular MR imaging of micrometastases. Int J Biomed Imaging. 2018;2018.

  5. Cheung KJ, Gabrielson E, Werb Z, Ewald AJ. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell. 2013;155(7):1639–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Padmanaban V, Krol I, Suhail Y, Szczerba BM, Aceto N, Bader JS, et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 2019;573(7774):439–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jia D, Jolly MK, Tripathi SC, Den Hollander P, Huang B, Lu M, et al. Distinguishing mechanisms underlying EMT tristability. Cancer Converg. 2017;1(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jolly MK, Tripathi SC, Jia D, Mooney SM, Celiktas M, Hanash SM, et al. Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget. 2016;7(19):27067.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shamir ER, Pappalardo E, Jorgens DM, Coutinho K, Tsai W-T, Aziz K, et al. Twist1-induced dissemination preserves epithelial identity and requires E-cadherin. J Cell Biol. 2014;204(5):839–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shangguan C, Gan G, Zhang J, Wu J, Miao Y, Zhang M, et al. Cancer-associated fibroblasts enhance tumor 18F-FDG uptake and contribute to the intratumor heterogeneity of PET-CT. Theranostics. 2018;8(5):1376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clocchiatti A, Ghosh S, Procopio M-G, Mazzeo L, Bordignon P, Ostano P, et al. Androgen receptor functions as transcriptional repressor of cancer-associated fibroblast activation. J Clin Investig. 2018;128(12):5531–48.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Goulet CR, Bernard G, Tremblay S, Chabaud S, Bolduc S, Pouliot F. Exosomes induce fibroblast differentiation into Cancer-associated fibroblasts through TGFβ signaling. Mol Cancer Res. 2018;16(7):1196–204.

    Article  CAS  Google Scholar 

  13. Ding S-M, Lu A-L, Zhang W, Zhou L, Xie H-Y, Zheng S-S, et al. The role of cancer-associated fibroblast MRC-5 in pancreatic cancer. J Cancer. 2018;9(3):614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chen M, Xiang R, Wen Y, Xu G, Wang C, Luo S, et al. A whole-cell tumor vaccine modified to express fibroblast activation protein induces antitumor immunity against both tumor cells and cancer-associated fibroblasts. Sci Rep. 2015;5(1):1–14.

    Google Scholar 

  15. Ahn EH, Kim Y, An SS, Afzal J, Lee S, Kwak M, et al. Spatial control of adult stem cell fate using nanotopographic cues. Biomaterials. 2014;35(8):2401–10.

    Article  CAS  PubMed  Google Scholar 

  16. Kim D-H, Smith RR, Kim P, Ahn EH, Kim H-N, Marbán E, et al. Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration. Integr Biol. 2012;4(9):1019–33.

    Article  CAS  Google Scholar 

  17. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.

    Article  CAS  PubMed  Google Scholar 

  18. Kshitiz G, Afzal J, Maziarz JD, Hamidzadeh A, Liang C, Erkenbrack EM, et al. Evolution of placental invasion and cancer metastasis are causally linked. Nat Ecol Evol. 2019;3(12):1743–53.

    Article  CAS  PubMed  Google Scholar 

  19. Kshitiz DA, Afzal J, Suhail Y, Ahn EH, Goyal R, Hubbi ME, et al. Control of the interface between heterotypic cell populations reveals the mechanism of intercellular transfer of signaling proteins. Integr Biol Quant Biosci Nano Macro. 2015;7(3):364–72.

    CAS  Google Scholar 

  20. Ren Y, Jia H-H, Xu Y-Q, Zhou X, Zhao X-H, Wang Y-F, et al. Paracrine and epigenetic control of CAF-induced metastasis: the role of HOTAIR stimulated by TGF-ss1 secretion. Mol Cancer. 2018;17(1):5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Batlle E, Massague J. Transforming growth factor-beta signaling in immunity and cancer. Immunity. 2019;50(4):924–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yin P, Wang W, Zhang Z, Bai Y, Gao J, Zhao C. Wnt signaling in human and mouse breast cancer: focusing on Wnt ligands, receptors and antagonists. Cancer Sci. 2018;109(11):3368–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karagiannis GS, Poutahidis T, Erdman SE, Kirsch R, Riddell RH, Diamandis EP. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol Cancer Res. 2012;10(11):1403–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yue Z, Yuan Z, Zeng L, Wang Y, Lai L, Li J, et al. LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells. FASEB J. 2018;32(5):2422–37.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang L, Song Y, Ling Z, Li Y, Ren X, Yang J, et al. R-spondin 2-LGR4 system regulates growth, migration and invasion, epithelial-mesenchymal transition and stem-like properties of tongue squamous cell carcinoma via Wnt/β-catenin signaling. EBioMedicine. 2019;44:275–88.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chan CH. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell. 2013;154.

  27. Chandramouli A, Simundza J, Pinderhughes A, Cowin P. Choreographing metastasis to the tune of LTBP. J Mammary Gland Biol Neoplasia. 2011;16(2):67–80.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Park J, Kim D-H, Shah SR, Kim H-N, Kshitiz G, Kim P, et al. Switch-like enhancement of epithelial-mesenchymal transition by YAP through feedback regulation of WT1 and Rho-family GTPases. Nat Commun. 2019;10(1):2797.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Friedl P, Locker J, Sahai E, Segall JE. Classifying collective cancer cell invasion. Nat Cell Biol. 2012;14(8):777–83.

    Article  PubMed  CAS  Google Scholar 

  30. Friedl P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol. 2009;10(7):445–57.

    Article  CAS  PubMed  Google Scholar 

  31. Herbst A, Jurinovic V, Krebs S, Thieme SE, Blum H, Göke B, et al. Comprehensive analysis of β-catenin target genes in colorectal carcinoma cell lines with deregulated Wnt/β-catenin signaling. BMC Genomics. 2014;15(1):74.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bronisz A, Godlewski J, Wallace JA, Merchant AS, Nowicki MO, Mathsyaraja H, et al. Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol. 2011;14(2):159–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. del Pozo MY, Park D, Ramachandran A, Ombrato L, Calvo F, Chakravarty P, et al. Mesenchymal cancer cell-stroma crosstalk promotes niche activation, epithelial reversion, and metastatic colonization. Cell Rep. 2015;13(11):2456–69.

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the UConn Health Startup fund provided by the UConn Health Dental School and Biomedical Engineering Department, as well as by National Cancer Institute, USA funded U54 sub-contract to UConn Health: 1U54CA209992-02.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, K., and Y.S.; methodology, A.N., Y.S., V.A., K.W., R.G., A.S., A.J., and K.; software, Y.S.; validation, A.N.; resources, K.; data curation, A.N.; writing-original draft preparation, K., Y.S., A.N.; writing-review and editing, K., Y.S., A.N.; project administration, V.A., Y.S., K.; funding acquisition, K.

Corresponding author

Correspondence to Kshitiz.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novin, A., Suhail, Y., Ajeti, V. et al. Diversity in cancer invasion phenotypes indicates specific stroma regulated programs. Human Cell 34, 111–121 (2021). https://doi.org/10.1007/s13577-020-00427-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00427-6

Keywords

Navigation