Skip to main content
Log in

ClC-3 induction protects against cerebral ischemia/reperfusion injury through promoting Beclin1/Vps34-mediated autophagy

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Acute ischemic stroke is a devastating disease with very limited therapeutics. Growing appreciation of dysregulated autophagy contributes to the progression of brain ischemic injury, making it to be an appealing intervention target. In terms of its well-characterized consequences, the signal molecules required for autophagy activation are rather poorly defined. Here, we found the induction of chloride channel-3 (ClC-3) directly activated autophagy, which played an important role in limiting cerebral ischemia/reperfusion (I/R) injury. Further mechanism exploration discovered that the up-regulation of ClC-3 was critical for the interaction of Beclin1 and Vps34. After ClC-3 knockdown using adeno-associated virus vectors in vivo, the autophagy activation was partially inhibited through disrupting the formation of Beclin1 and Vps34 complex. Consistent with these observations, ClC-3 knockdown could also significantly aggravated cerebral I/R injury through suppressing autophagy in vivo, which further confirmed the neuroprotective roles of ClC-3. Collectively, we provided an novel evidence for ClC-3 serving as a crucial regulator of autophagy; and our results indicated that the induction of ClC-3 may serve as a self-protective mechanism against cerebral I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Catanese L, Tarsia J, Fisher M. Acute ischemic stroke therapy overview. Circ Res. 2017;120(3):541–58. https://doi.org/10.1161/CIRCRESAHA.116.309278.

    Article  CAS  PubMed  Google Scholar 

  2. Algra A, Wermer MJ. Stroke is treatable, but prevention is the key. Nat Rev Neurol. 2017;13(2):78–9. https://doi.org/10.1038/nrneurol.2017.4.

    Article  PubMed  Google Scholar 

  3. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459–544. https://doi.org/10.1016/S0140-6736(16)31012-1.

    Article  Google Scholar 

  4. Khandelwal P, Yavagal DR, Sacco RL. Acute ischemic stroke intervention. J Am Coll Cardiol. 2016;67(22):2631–44. https://doi.org/10.1016/j.jacc.2016.03.555.

    Article  PubMed  Google Scholar 

  5. Chamorro Á, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016;15(8):869–81. https://doi.org/10.1016/S1474-4422(16)00114-9.

    Article  CAS  PubMed  Google Scholar 

  6. Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014;20(3):460–73. https://doi.org/10.1089/ars.2013.5371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zheng Y, Wu Z, Yi F, Orange M, Yao M, Yang B, Liu J, Zhu H. By activating Akt/eNOS bilobalide B inhibits autophagy and promotes angiogenesis following focal cerebral ischemia reperfusion. Cell Physiol Biochem. 2018;47(2):604–16. https://doi.org/10.1159/000490016.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Liu YY, Li Q, Pan CS, Fan JY, Wang CS, Sun K, Han JY. Panax notoginseng saponins restrains ischemia reperfusion-induced rat mesenteric microcirculatory disturbance. World J Tradit Chin Med. 2015;1(3):1–8. https://doi.org/10.15806/j.issn.2311-8571.2014.0011.

    Article  Google Scholar 

  9. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140(3):313–26. https://doi.org/10.1016/j.cell.2010.01.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu JJ, Quijano C, Wang J, Finkel T. Metabolism meets autophagy. Cell Cycle. 2010;9(24):4780–1. https://doi.org/10.4161/cc.9.24.14273.

    Article  CAS  PubMed  Google Scholar 

  11. Liu J, Weaver J, Jin X, Zhang Y, Xu J, Liu KJ, Li W, Liu W. Nitric oxide interacts with caveolin-1 to facilitate autophagy-lysosome-mediated claudin-5 degradation in oxygen-glucose deprivation-treated endothelial cells. Mol Neurobiol. 2016;53(9):5935–47. https://doi.org/10.1007/s12035-015-9504-8.

    Article  CAS  PubMed  Google Scholar 

  12. Jiang M, Wang H, Jin M, Yang X, Ji H, Jiang Y, Zhang H, Wu F, Wu G, Lai X, Cai L, Hu R, Xu L, Li L. Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 microglial/macrophage polarization. Cell Physiol Biochem. 2018;47(2):864–78. https://doi.org/10.1159/000490078.

    Article  CAS  PubMed  Google Scholar 

  13. Yu Z, Sheng H, Liu S, Zhao S, Glembotski CC, Warner DS, Paschen W, Yang W. Activation of the ATF6 branch of the unfolded protein response in neurons improves stroke outcome. J Cereb Blood Flow Metab. 2017;37(3):1069–79. https://doi.org/10.1177/0271678X16650218.

    Article  CAS  PubMed  Google Scholar 

  14. Tovar-y-Romo LB, Penagos-Puig A, Ramírez-Jarquín JO. Endogenous recovery after brain damage: molecular mechanisms that balance neuronal life/death fate. J Neurochem. 2016;136(1):13–27. https://doi.org/10.1111/jnc.13362.

    Article  CAS  PubMed  Google Scholar 

  15. Guzman RE, Miranda-Laferte E, Franzen A, Fahlke C. Neuronal ClC-3 splice variants differ in subcellular localizations, but mediate identical transport functions. J Biol Chem. 2015;290(43):25851–622. https://doi.org/10.1074/jbc.M115.668186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmieder S, Lindenthal S, Ehrenfeld J. Tissue-specific N-glycosylation of the ClC-3 chloride channel. Biochem Biophys Res Commun. 2001;286(3):635–40. https://doi.org/10.1006/bbrc.2001.5407.

    Article  CAS  PubMed  Google Scholar 

  17. Farmer LM, Le BN, Nelson DJ. CLC-3 chloride channels moderate long-term potentiation at Schaffer collateral-CA1 synapses. J Physiol. 2013;591(4):1001–155. https://doi.org/10.1113/jphysiol.2012.243485.

    Article  CAS  PubMed  Google Scholar 

  18. Yang L, Ye D, Ye W, Jiao C, Zhu L, Mao J, Jacob TJ, Wang L, Chen L. ClC-3 is a main component of background chloride channels activated under isotonic conditions by autocrine ATP in nasopharyngeal carcinoma cells. J Cell Physiol. 2011;226(10):2516–26. https://doi.org/10.1002/jcp.22596.

    Article  CAS  PubMed  Google Scholar 

  19. Duan DD. The ClC-3 chloride channels in cardiovascular disease. Acta Pharmacol Sin. 2011;32(6):675–84. https://doi.org/10.1038/aps.2011.30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu L, Zhang S, Fan H, Zhong Z, Li X, Jin X, Chang Q. ClC-3 chloride channel in hippocampal neuronal apoptosis. Neural Regen Res. 2013;8(32):3047–54. https://doi.org/10.3969/j.issn.1673-5374.2013.32.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dickerson LW, Bonthius DJ, Schutte BC, Yang B, Barna TJ, Bailey MC, Nehrke K, Williamson RA, Lamb FS. Altered GABAergic function accompanies hippocampal degeneration in mice lacking ClC-3 voltage-gated chloride channels. Brain Res. 2002;958(2):227–50. https://doi.org/10.1016/s0006-8993(02)03519-9.

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Lu B, Sheng L, Zhu Z, Sun H, Zhou Y, Yang Y, Xue D, Chen W, Tian X, Du Y, Yan M, Zhu W, Xing F, Li K, Lin S, Qiu P, Su X, Huang Y, Yan G, Yin W. Hexokinase 2-dependent hyperglycolysis driving microglial activation contributes to ischemic brain injury. J Neurochem. 2018;144(2):186–200. https://doi.org/10.1111/jnc.14267.

    Article  CAS  PubMed  Google Scholar 

  23. Toshimitsu M, Kamei Y, Ichinose M, Seyama T, Imada S, Iriyama T, Fujii T. Atomoxetine, a selective norepinephrine reuptake inhibitor, improves short-term histological outcomes after hypoxic-ischemic brain injury in the neonatal male rat. Int J Dev Neurosci. 2018;70:34–45. https://doi.org/10.1016/j.ijdevneu.2018.03.011.

    Article  CAS  PubMed  Google Scholar 

  24. Sun Y, Zhang T, Zhang Y, Li J, Jin L, Sun Y, Shi N, Liu K, Sun X. Ischemic postconditioning alleviates cerebral ischemia-reperfusion injury through activating autophagy during early reperfusion in rats. Neurochem Res. 2018;43(9):1826–40. https://doi.org/10.1007/s11064-018-2599-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Q, Zhang T, Wang J, Zhang Z, Zhai Y, Yang GY, Sun X. Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke. Biochem Biophys Res Commun. 2014;444(2):182–8. https://doi.org/10.1016/j.bbrc.2014.01.032.

    Article  CAS  PubMed  Google Scholar 

  26. Li L, Tian J, Long MK, Chen Y, Lu J, Zhou C, Wang T. Protection against experimental stroke by ganglioside GM1 is associated with the inhibition of autophagy. PLoS ONE. 2016;11(1):e0144219. https://doi.org/10.1371/journal.pone.0144219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee NR, Ban J, Lee NJ, Yi CM, Choi JY, Kim H, Lee JK, Seong J, Cho NH, Jung JU, Inn KS. Activation of RIG-I-mediated antiviral signaling triggers autophagy through the MAVS-TRAF6-Beclin-1 signaling axis. Front Immunol. 2018;9:2096. https://doi.org/10.3389/fimmu.2018.02096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu J, Li M, Li L, Chen S, Wang X. Ubiquitination of the PI3-kinase VPS-34 promotes VPS-34 stability and phagosome maturation. J Cell Biol. 2018;217(1):347–60. https://doi.org/10.1083/jcb.201705116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Al-Mohammad A, Mant J. The diagnosis and management of chronic heart failure: review following the publication of the NICE guidelines. Heart. 2011;97(5):411–6. https://doi.org/10.1136/hrt.2010.214999.

    Article  PubMed  Google Scholar 

  30. Liu J, Zhang FF, Li L, Yang J, Liu J, Guan YY, Du YH. ClC-3 deficiency prevents apoptosis induced by angiotensin II in endothelial progenitor cells via inhibition of NADPH oxidase. Apoptosis. 2013;18(10):1262–73. https://doi.org/10.1007/s10495-013-0881-z.

    Article  CAS  PubMed  Google Scholar 

  31. Diaz RJ, Armstrong SC, Batthish M, Backx PH, Ganote CE, Wilson GJ. Enhanced cell volume regulation: a key protective mechanism of ischemic preconditioning in rabbit ventricular myocytes. J Mol Cell Cardiol. 2003;35(1):45–58. https://doi.org/10.1016/s0022-2828(02)00277-8.

    Article  CAS  PubMed  Google Scholar 

  32. Panickar KS, Qin B, Anderson RA. Ischemia-induced endothelial cell swelling and mitochondrial dysfunction are attenuated by cinnamtannin D1, green tea extract, and resveratrol in vitro. Nutr Neurosci. 2015;18(7):297–306. https://doi.org/10.1179/1476830514Y.0000000127.

    Article  CAS  PubMed  Google Scholar 

  33. Hamacher-Brady A, Brady NR, Gottlieb RA. Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem. 2006;281(40):29776–87. https://doi.org/10.1074/jbc.M603783200.

    Article  CAS  PubMed  Google Scholar 

  34. Dutta D, Xu J, Kim JS, Dunn WA Jr, Leeuwenburgh C. Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity. Autophagy. 2013;9(3):328–44. https://doi.org/10.4161/auto.22971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lv XF, Zhang YJ, Liu X, Zheng HQ, Liu CZ, Zeng XL, Li XY, Lin XC, Lin CX, Ma MM, Zhang FR, Shang JY, Zhou JG, Liang SJ, Guan YY. TMEM16A ameliorates vascular remodeling by suppressing autophagy via inhibiting Bcl-2-p62 complex formation. Theranostics. 2020;10(9):3980–93. https://doi.org/10.7150/thno.41028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang T, Gao D, Yang X, Hua X, Li S, Sun H. Exogenous netrin-1 inhibits autophagy of ischemic brain tissues and hypoxic neurons via PI3K/mTOR pathway in ischemic stroke. J Stroke Cerebrovasc Dis. 2019;28(5):1338–455. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.01.032.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81873794).

Author information

Authors and Affiliations

Authors

Contributions

Beilin Zhang carried out the study and drafted the manuscript. Shaokuan Fang participated in the study design and the data statistics. Fang Deng and Chunkui Zhou participated in scientific discussion of the data.

Corresponding author

Correspondence to Shaokuan Fang.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Consent for publication

This study is approved by all authors for publication.

Human or animal rights

All animal experiments were approved and performed according to the guidelines of the institutional animal care and use committee of the Jilin University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Deng, F., Zhou, C. et al. ClC-3 induction protects against cerebral ischemia/reperfusion injury through promoting Beclin1/Vps34-mediated autophagy. Human Cell 33, 1046–1055 (2020). https://doi.org/10.1007/s13577-020-00406-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00406-x

Keywords

Navigation